
Module Name: LIFE SCIENCES - 703 Exam Date: 26-Dec-2023 Batch: 09:00-12:00

		A4 4		
		4		
)bjec	tive Question 703002		2.0	0.50
		The number 681 ³² — 319 ³² is divisible by 1. both 362 and 1000 2. 362 but not 1000 3. 1000 but not 362 4. neither 362 nor 1000 संख्या 681 ³² — 319 ³² विभाज्य है 1. दोनों 362 और 1000 से 2. 362 से किंतु 1000 से नहीं 3. 1000 से किंतु 362 से नहीं 4. न तो 362 से न ही 1000 से A1 1 A2 2 A3 3 A4 4		
		4		
Obied	tive Question			
	703003	In an examination 3 medals were awarded for each of 5 subjects. If three candidates won exactly four medals each, and no candidate won just one medal, the total number of medal winners 1. was exactly 4 2. was exactly 5 3. could be either 5 or 6 4. was exactly 6 एक परीक्षा में 5 विषयों में प्रत्येक में 3 पदक दिए गए थे। यदि तीन अभ्यर्थियों ने प्रत्येक ने 4 पदक जीते, और किसी ने भी केवल एक पदक नहीं जीता, तो पदक जीतने वालों की कुल संख्या 1. ठीक 4 थी 2. ठीक 5 थी 3. 5 या 6 हो सकती थी 4. ठीक 6 थी A1 1 1 A2 2 2 A3 3 3 A4 4	2.0	0.50
		4		

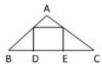
Suppose each of my brothers has the same number of children as I have sisters, each of the sister having the same number of children as I have brothers. If my siblings have a total of 12 children, none of them an only child, the number of my siblings is 1. 2. 3. 6 4. 7 मान लें कि मेरे प्रत्येक भाई के उतने ही बच्चे हैं जितनी मेरी बहनें हैं, प्रत्येक बहन के उतने ही बच्चे हैं जितने मेरे भाई हैं। यदि मेरे सहोदरों के कुल 12 बच्चे हैं और उनमें से कोई भी एकल संतान नहीं है तो मेरे सहोदरों की संख्या है 2. 5 3. 6 4. 7 Al 1 1 A2 2 2 A3 3 3 A4 4 Objective Question 703005 2.0 0.50 In a grid puzzle, each row and column in the 9×9 grid, as well as each 3×3 subgrid shown with heavy borders, must contain all the digits 1-9. 9 8 2 8 8 5 4 9 4 2 9 3 9 1 ? 5 1 3 7 1 2 7 6 In the given partially filled grid, the digit in the square marked "?" is 1. 3 9 2. 3. 8 4. 7

एक संजाल (ग्रिड) पहेली में, 9×9 के संजाल (ग्रिड) की प्रत्येक पंक्ति और स्तंभ में, साथ ही साथ 3×3 के प्रत्येक उप-संजाल जिन्हें गाढ़ी रेखाओं से दर्शाया गया है, में 1 से 9 तक सभी अंक होने चाहिए।

1					8			9
	S &	2			3			8
	8		5	4	9		- 1	
	4	- 3	2	8 8		9	1	
3	9 9	9				2		1
		1		?	5		4	
			9	1	2		3	
7					-	1		
2	11 16		7					6

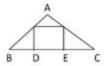
दिये गये आंशिक रूप से भरे संजाल में, "?" के निशान वाले वर्ग में अंक है

- 1. 3
- 2. 9
- 3. 8
- 4. 7
- Al 1
 - 1
- A2 2
- 2
- A3 3
- 3
- A4 4


Objective Question

6 703006

In the given triangle ABC, a square is drawn as shown. Given, $\angle BAC = 90^{\circ}$, BC = a, BD = x and EC = y; which of the following is the area of the square?


2.0

0.50

- 1. (a-x)y
- 2. (a-y)x
- 3. (a-x)(a-y)
- 4. xy

दिए गए त्रिभुज ABC में, चित्र में दर्शाये अनुसार एक वर्ग खींचा गया है। $\angle BAC = 90^{\circ}$, BC = a, BD = x और EC = y दिए गए हैं। निम्नलिखित में से कौन-सा वर्ग का क्षेत्रफल है?

- 1. (a-x)y
- 2. (a-y)x
- 3. (a-x)(a-y)
- 4. xy
- A1 1

A2 2

2

A3 3

Objective Question

703007

What is the difference, 11 hours after synchronisation, in the time shown by a standard watch and a watch whose hour and minute hands coincide every 64 minutes?

- 11 min 1.
- 16 min
- 3. 22 min
- 4. 44 min

त्ल्यकालन के 11 घंटे बाद, एक मानक घड़ी और वह घड़ी जिसके घंटा व मिनट की सुइयां प्रत्येक 64 मिनट के बाद सन्निपतित होती हैं, में कितना समयांतराल है?

- 1. 11 **मि**नट
- **16 ਸਿ**ਜਟ
- 3. 22 मिनट
- 4. 44 मिनट

A1 1

1

A2 2

2

A3 3

3

A4 4

4

2.0

0.50

Six years ago, the ages of three persons were in ratio 3:5:8. If the sum of their ages 8 years from now would be 122, what are their present ages (in years)? 1. 15, 25, 40	2.0	0.50
2. 21, 31, 46 3. 15, 25, 30 4. 21, 26, 37 छ: वर्ष पूर्व, तीन व्यक्तियाँ की आयु 3:5:8 के अनुपात में थी। वर्तमान से 8 वर्ष पश्चात् उनकी आयु का योग 122 होगा, तो उनकी वर्तमान आयु (वर्षों में) क्या हैं? 1. 15, 25, 40 2. 21, 31, 46 3. 15, 25, 30 4. 21, 26, 37 Al 1 1 A2 2 2 A3 3		
A4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.0	0.50
A test consists of 20 questions. A correct answer retriches 4 marks and a wrong answer is penalised by deducting 1 mark. Unattempted questions fetch nothing. If a candidate with a few wrong answers secures 44 marks, how many questions were attempted? 1. 15 2. 16 3. 17 4. 18 very verified by selections. A correct answer secures 44 marks and a wrong answers secures 44 marks, how many questions were attempted? 1. 15 2. 16 3. 17 4. 18 very verified by selections. A size field a size field by selections. A size field by selections field by selections. A size field by selection f		
	3. 15, 25, 30 4. 21, 26, 37 छ: वर्ष पूर्व. तीन व्यक्तियों की आयु 3.5.8 के अनुपात में थी। वर्तमान से 8 वर्ष परचात् उनकी आयु का योग 122 होगा, तो उनकी वर्तमान आयु (वर्षों में) क्या है? 1. 15, 25, 40 2. 21, 31, 46 3. 15, 25, 30 4. 21, 26, 37 Al 1 1 A2 2 2 A3 3 3 A4 4 1. 1 1. 1 1. 1 2. 1 3. 17 4. 18 Use परीशा 20 प्रश्तों की है। प्रत्येक सही उत्तर के 4 अंक मिलते हैं और प्रत्येक गलत उत्तर के तिथ 1 अंक घटाया जाता है। अनुत्तरित प्रक्तों का कोई अंक नहीं मिलता है। कुछ प्रश्तों के गलत उत्तरों के साथ यदि कोई विद्यार्थी 44 अंक पाता है तो उसने कितने प्रकृत कितने प्रम्त हल किये थै? 1. 15 2. 16 3. 17 4. 18 1. 15 2. 16 3. 17 4. 18 A2 2 2. 2	3. 15, 25, 30 4. 21, 26, 37 ाठ: वर्ष पूर्व, तीन व्यक्तियों की आयु 3,5,8 के अनुपात में थी। वर्तमान से 8 वर्ष परपात उनकी आयु का योग 122 होगा, तो उनकी वर्तमान आयु (वर्षों में) क्या है? 1. 15, 25, 40 2. 21, 31, 46 3. 15, 25, 30 4. 21, 26, 37 All 1 1 1 A2 2 2 2 A3 3 3 A4 4 4 4 4 A test consists of 20 questions. A correct answer fetches 4 marks and a wrong answer is penalised by deducting 1 mark. Unattempted questions fetch nothing. If a candidate with a few wrong answers secures 44 marks, how many questions were attempted? 1. 15 2. 16 3. 17 4. 18 La test consists of 20 questions. A correct answer fetches 4 marks and a wrong answer is penalised by deducting 1 mark. Unattempted questions fetch nothing. If a candidate with a few wrong answers secures 44 marks, how many questions were attempted? 1. 15 2. 16 3. 17 4. 18 A1 1 1 1 A2 2 2 2

1. 7 a = 11 b = 5 c 2. √35 a = √55 b = √77 c 3. √7/5 a = √5/11 b = √11/7 c 4. √5/11 a = √11/7 b = √7/5 c यदि ab = 5, bc = 7 और ca = 11 है, तो निम्नलिखित में से कौन-सी सर्वसिमिका मान्य है? 1. 7 a = 11 b = 5 c 2. √33 a = √55 b = √77 c 3. √7/5 a = √5/11 b = √11/7 c 4. √5/11 a = √11/7 b = √7/5 c A1 1 1 A2 2 2 A3 3 3 A4 4 1 4 C0. The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km मानचिव पर एक देश का नक्शा एक पतंग से अनुमानित किया गया है जिसके प्रत्येक	2.0 0.3
2. $\sqrt{35} a = \sqrt{55} b = \sqrt{77} c$ 3. $\sqrt{7/5} a = \sqrt{5/11} b = \sqrt{11/7} c$ 4. $\sqrt{5/11} a = \sqrt{11/7} b = \sqrt{7/5} c$	2.0 0.3
4. √5/11 a = √11/7 b = √7/5 c □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	2.0 0.5
यदि $ab = 5$, $bc = 7$ और $ca = 11$ है, तो निम्नलिखित में से कौन-सी सर्वसमिका मान्य है? 1. $7a = 11b = 5c$ 2. $\sqrt{35}a = \sqrt{55}b = \sqrt{77}c$ 3. $\sqrt{7/5}a = \sqrt{5/11}b = \sqrt{11/7}c$ 4. $\sqrt{5/11}a = \sqrt{11/7}b = \sqrt{7/5}c$ All 1 1 A2 2 2 2 A3 3 3 A4 4 1 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.3
1. $7 = 11 b = 5 c$ 2. $\sqrt{35} = \sqrt{55} b = \sqrt{77} c$ 3. $\sqrt{7/5} = \sqrt{5/11} b = \sqrt{11/7} c$ 4. $\sqrt{5/11} = \sqrt{11/7} b = \sqrt{7/5} c$ All 1 1 A2 2 2 A3 3 3 A4 4 1 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.3
1. $7 a = 11 b = 5 c$ 2. $\sqrt{35} a = \sqrt{55} b = \sqrt{77} c$ 3. $\sqrt{7/5} a = \sqrt{5/11} b = \sqrt{11/7} c$ 4. $\sqrt{5/11} a = \sqrt{11/7} b = \sqrt{7/5} c$ All 1 A2 2 2 A3 3 3 A4 4 1 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
2. √35 a = √55 b = √77 c 3. √7/5 a = √5/11 b = √11/7 c 4. √5/11 a = √11/7 b = √7/5 c A1 1 1 1 A2 2 2 2 A3 3 3 3 A4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 0.3
3. $\sqrt{7/5} a = \sqrt{5/11} b = \sqrt{11/7} c$ 4. $\sqrt{5/11} a = \sqrt{11/7} b = \sqrt{7/5} c$ A1 1 1 1 A2 2 2 2 A3 3 3 A4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 0.3
4. $\sqrt{5/11} \ a = \sqrt{11/7} \ b = \sqrt{7/5} \ c$ A1 1 1 A2 2 2 A3 3 3 A4 4 1 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
A1 1 A2 2 A3 3 A4 4 English and a second	2.0 0.3
1 A2 2 2 A3 3 3 A4 4 4 4 1 1 A2 1 1 A3 3 A4 4 1 4 1 A4 5 A4 4 1 A 5 A4 5 A5 6 A6 6 A7 6 A7 7 A7 7 A7 7 A7 7 A7 7 A7	2.0 0.5
1 A2 2 2 A3 3 3 A4 4 4 4 1 1 A2 1 1 A3 3 A4 4 1 4 1 A4 5 A4 4 1 A 5 A4 5 A5 6 A6 6 A7 6 A7 7 A7 7 A7 7 A7 7 A7 7 A7	2.0 0.3
A2 2 A3 3 A4 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
A3 3 A4 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
A3 3 A4 4 Element 1 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
A3 3 A4 4 1	2.0 0.3
A4 4 The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
The shape of a country on a map is approximated by a kite with diagonals of length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
length 300 km each. The minimum possible length of its boundary will be closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	2.0 0.5
closest to 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km	
 1. 1696 km 2. 1131 km 3. 848 km 4. 600 km 	
 1131 km 848 km 600 km 	
3. 848 km 4. 600 km	
4. 600 km	
मानचित्र पर एक देश का नक्शा एक पतंग से अनुमानित किया गया है जिसके प्रत्येक	
and the state of t	
विकर्ण की लंबाई 300 किमी है। देश की परिसीमा की न्यूनतम संभव लंबाई निकटस्थ	
*	
1. 1696 南州 南	
2. 1131 किमी के	
3. 848 किमी के	
4. 600 ((((((((((
A1 1	
1	
2	
A3 3	
3	
*	
4	
on .	2.0 0.5
	A3 3 3 3 A4 4 5

A rectangular paper of sides in the ratio 3:4 is folded in half across the longer side. The process is repeated several times. After how many foldings will the ratio of the sides be 3:4? (Ignore the finite thickness of the paper.) 1. Never Every second fold Every third fold 4. Every fifth fold एक आयताकार काग़ज की भुजाएं 3:4 के अनुपात में हैं। उसे लंबी भुजा को आधा करते हुए मोड़ा जाता है। यह प्रक्रिया अनेक बार दोहरायी जाती है। कितनी बार मोड़ने के पश्चात् भुजाओं का अनुपात 3:4 होगा? (कागज की परिमित मोटाई की उपेक्षा करें।) कशी नहीं 2. हर दूसरी वार मोइने पर हर तीसरी बार मोइने पर हर पाँचवी बार मोडने पर A1 1 1 A2 2 A3 3 3 A4 4 Objective Question 703013 0.50 The sum of squares of four integers 1. can never be divisible by 13 2. can never be divisible by 15 3. can be divisible by 17 4. can never be divisible by 19 चार पूर्णांकों के वर्गों का योग कभी भी 13 से विभाज्य नहीं हो सकता है कभी भी 15 से विभाज्य नहीं हो सकता है 17 से विभाज्य हो सकता है कभी भी 19 से विभाज्य नहीं हो सकता है A1 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 703014 2.0 0.50

Four students Adil, Billy, Ramesh and Diana joined a college in 1991, 1992, 1993 and 1994 but not necessarily in that order. Each student joined one of the four departments, viz. Physics, Chemistry, Mathematics and Biology. No two students joined the same department. One of those who joined the college before 1993 joined Chemistry. No one joined the college after Ramesh. Diana joined Physics. Adil joined one year after Diana but didn't join Chemistry. Who joined the college in the year 1993? 1. Adil 2. Billy 3. Ramesh 4. Diana चार विदयार्थियों आदिल, बिली, रमेश और डायना ने एक कॉलेज में वर्ष 1991, 1992, 1993 और 1994 में, किंत् आवश्यक नहीं कि इसी क्रम में प्रवेश लिया है। प्रत्येक विद्यार्थी चार विभागों अर्थात् भौतिक विज्ञान, रसायन विज्ञान, गणित और जीव विज्ञान में से किसी एक से जुड़ा। वर्ष 1993 से पहले प्रवेश लेने वालों में से कोई एक रसायन विज्ञान से जुड़ा। रमेश के पश्चात् किसी ने भी कॉलेज में प्रवेश नहीं लिया। डायना भौतिक विज्ञान से जुड़ी। आदिल ने डायना के एक वर्ष बाद प्रवेश लिया लेकिन रसायन विज्ञान से नहीं जुड़ा । वर्ष 1993 मे किस ने प्रवेश लिया? 1. आदिल 2. বিলী 3. रमेश 4. डायना A1 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 2.0 0.50 In the following finite sequence of integers, how many 9s are divisible by the integers immediately preceding them? 8,3,4,9,3,5,9,5,9,9,9,4,5,9,5,6,3,3,5,7,2,3,9,9,8,9,3,9,1,9,4 3 1. 2. 4 3. 5 पूर्णांकों की निम्नलिखित परिमित श्रेणी में, कितने 9 उनके त्रंत पूर्ववर्ती पूर्णांक से विभाज्य है? 8,3,4,9,3,5,9,5,9,9,9,4,5,9,5,6,3,3,5,7,2,3,9,9,8,9,3,9,1,9,4 1. 3 2. 4 3. 5 4. 6 A1 1 1 A2 2

703015

	A3 3		
	3		
	A4 4		
	4		
bjective Quest			
6 703016		2.0	0.50
	Vehicle number plates have two letters out of the 26 letters of the English		
	alphabet followed by four decimal digits. How many different number plates		
	are possible if repetition of letters and digits is allowed?		
	1. $26 \times 25 \times 10 \times 9 \times 8 \times 7$		
	2. $26 \times 26 \times 10 \times 10 \times 10 \times 10$		
	3. $(26 \times 25 \times 24 \times 23 \times 10 \times 9) / (4 \times 3 \times 2 \times 2)$		
	4. $26 \times 25 \times 24 \times 23 \times 10 \times 9$		
	वाहन नंबर प्लेटों में अंग्रेजी के 26 वर्णाक्षरों में से दो अक्षरों के पश्चात् चार दशमलव		
	अंक होते हैं। यदि अक्षरों और अंकों की पुनरावृत्ति की जा सकती हो तो कितनी भिन्न		
	नंबर प्लेटें संभव हैं?		
	1. 26 × 25 × 10 × 9 × 8 × 7		
	2. $26 \times 26 \times 10 \times 10 \times 10 \times 10$		
	3. $(26 \times 25 \times 24 \times 23 \times 10 \times 9) / (4 \times 3 \times 2 \times 2)$		
	4. $26 \times 25 \times 24 \times 23 \times 10 \times 9$		
	A1 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
bjective Quest	ion	No.	1/
7 703017	The population of a species (y) changes with the month (x) as shown in the	2.0	0.50
	graph. Which of the following equations best describes the population curve?		
	7		
	€ 6		
	(willim) upleinded		
	50 4 - • • •		
	ob ob		
	<u> </u>		
	0 1 2 3 4 5 6 7 8		
	THE		
	1. $y = 3x + 3.2$		
	2. $y = 0.96(x - 4)$		
	2. $y = 0.96 (x - 4)$ 3. $y = 0.3x^2 + x + 3.6$		
	2. $y = 0.96(x - 4)$		
	2. $y = 0.96 (x - 4)$ 3. $y = 0.3x^2 + x + 3.6$		

एक प्रजाति की जनसंख्या (population, y) का माह (month, x) के साथ परियर्तन ग्राफ में दर्शाये अनुसार है। निम्नलिखित समीकरणों में से कौन-सा समीकरण जनसंख्या वक्र का सही वर्णन करता है? 6 population (million) 5 4 2 3 month 1. y = 3x + 3.2y = 0.96(x - 4) $y = 0.3x^2 + x + 3.6$ y = 0.3 x + 3.6A1 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 18 703018 2.0 0.50 Symbols \ominus , \otimes , \oslash represent mathematical operations (out of +, -, +, \times) which respect the relations $8 \oslash 5 \ominus 9 = 53$ $9 \ominus 3 \otimes 2 = 25$ What is the value of 2 ⊗ 13 ⊘ 7? 2. 3. -89 चिह्न \ominus , \otimes , \oslash गणितीय संक्रियाओं $(+,-,\div,\times$ में से) को प्रदर्शित करते हैं जो कि निम्नतिखित संबंधों $8 \oslash 5 \ominus 9 = 53$ $9 \ominus 3 \otimes 2 = 25$ का पालन करते हैं। 2 ⊗ 13 ⊘ 7 का मान है?

2.

A1 1

1

-89

	A2 2		Ï
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Question		120	0.50
9 703019	A circular disk of unit radius rolls along a straight line from P to Q. P PQ = 9π Q Which of the following figures shows the orientation of the disk at Q? A B D D D D D D D D D D D D D D D D D D	2.0	0.50
	$P PQ = 9\pi Q$		
	निम्नलिखित चित्रों में से कौन सा चित्र चकती का Q पर अभिविन्यास दर्शाता है?		
	Å B D D D		
	1. A 2. B		
	3. C 4. D		
	A1 1		
	1		
	A2 ₂		
	2		
	A3 3		
	3 A4 ₄		
	A 4		
	4		

coins so as to double the number of coins. In another piggy bank, a girl puts 2 coins on day 1 but adds coins on every alternate day so as to double the number of coins. On which day will they put the same number of coins in their piggy banks? Day 2 2. Day 3 Day 5 on no day दिन संख्या 1 पर एक लड़का अपनी गुल्लक में एक सिक्का डालता है। उत्तरोत्तर दिनों में वह इतने सिक्के और डालता है कि सिक्कों की संख्या दुगनी होती जाए। एक अन्य गुल्लक में एक लड़की दिन संख्या 1 पर 2 सिक्के डालती है किंतु एकांतर दिवसीं पर यह इतने सिक्के और डालती है कि सिक्कों की संख्या दुगनी होती जाए। किस दिन पर अपनी गुल्लकों में उनके द्वारा गुल्लक में डाले गए सिक्कों की संख्या समान होगी? दूसरे दिन तीसरे दिन पांचवे दिन किसी भी दिन नहीं A1 1 A2 2 2 A3 3 3 A4 4 Objective Question 703021 2.0 0.50 Which one of the following enzymes does NOT catalyze the oxidation of substrate by reducing the electron acceptor, NAD*? 1. Lactate dehydrogenase 2. Pyruvate dehydrogenase 3. Succinate dehydrogenase 4. Isocitrate dehydrogenase तिस्त एन्जाइमों में से कौत इलेक्टात बाही NAD* के अपचयत द्वारा अभिकारक के ऑक्सीकरण को उत्पेरित नहीं करता है? 1. लैक्टेट डिहाइड्रोजितेज 2. पाइरूवेट डिहाड्रोजिनेज 3. सक्सीतेट डिहाड्रोजितेज 4. आइसोसाइट्रेट डिहाड्रोजिनेज A1 1 1 A2 2 2 A3 3 3

On day 1, a boy puts one coin in his piggy bank. On successive days he adds

	A4 4		
	4		
bjective Question	n .		
2 703022	The pH of endocytic vesicles is 5.2, and the pH of gastric juice is 2.0. The endocytic vesicle has a [H ⁺] that is	2.0	0.50
	1. 15.85 times lower than that of gastric juice.		
	2. 0.1585 times lower than that of gastric juice.		
	3. 158.5 times lower than that of gastric juice.		
	4. 1585 times lower than that of gastric juice.		
	अन्तःकोशिकीय पुटिकाओं का pH 5.2 है, तथा जठर रस का pH 2.0 है।		
	अन्तःकोशिकीय पुटिका का [H⁺] है, जो कि		
	1. जठर रस से 15.85 गुना कम होगा।		
	2. जठर रस से 0.1585 गुना कम होगा।		
	3. जठर रस से 158.5 गुना कम होगा।		
	4. जठर रस से 1585 गुना कम होगा।		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	and the second s		
	3		
	3 A4 ₄		
Objective Questio	A4 4 : 4	20	0.50
Objective Question 703023	A4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.0	0.50
and the same of th	A4 4 4 One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing?	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands विलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है।	2.0	0.50
and the same of th	A4 4 One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands विलोमानुकमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands बिलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलन (अनेलिङ्ग) किया तो निम्त में से न्यूक्लिक अम्ल की संरचना का कौन	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands विलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलन (अनेलिङ्ग) किया तो निम्त में से न्यूक्लिक अम्ल की संरचना का कौन सा प्रकार जल में अंगीकृत होगा?	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands बिलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलन (अनेलिङ्ग) किया तो निम्न में से न्यूक्लिक अम्ल की संरचना का कौन सा प्रकार जल में अंगीकृत होगा? 1. द्वि- रज्जुक न्यूक्लिक अम्ल का A – प्रकार	2.0	0.50
and the same of th	A4 4 One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands बिलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलत (अनेलिङ्ग) किया तो निम्त में से न्यूक्लिक अम्ल की संरचना का कौन सा प्रकार जल में अंगीकृत होगा? 1. दि- रज्जुक न्यूक्लिक अम्ल का A – प्रकार 2. दि- रज्जुक न्यूक्लिक अम्ल का B – प्रकार	2.0	0.50
and the same of th	One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands विलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलन (अनेलिङ्ग) किया तो निम्त में से न्यूक्लिक अम्ल की संरचना का कौन सा प्रकार जल में अंगीकृत होगा? 1. दि- रज्जुक न्यूक्लिक अम्ल का A – प्रकार 2. दि- रज्जुक न्यूक्लिक अम्ल का B – प्रकार 3. द्वि- रज्जुक न्यूक्लिक अम्ल का Z – प्रकार	2.0	0.50
and the same of th	A4 4 One strand of a palindromic dsDNA is composed of 5' - CCGCGGCGG - 3'. Which one of the following forms of nucleic acid structures will be adopted in water if sense and antisense strands are mixed in equal proportion followed by annealing? 1. A-form of double-stranded nucleic acid 2. B-form of double-stranded nucleic acid 3. Z-form of double-stranded nucleic acid 4. Both will remain as single strands िवलोमानुक्रमित dsDNA का एक रज्जुक 5' - CCGCGGCGG - 3' से निर्मित है। यदि अर्थ तथा प्रतिअर्थ रज्जुक को समान अनुपात में मिलाया गया तत्पश्चात अनीलन (अनेलिङ्ग) किया तो निम्न में से न्यूक्तिक अम्ल की संरचना का कौन सा प्रकार जल में अंगीकृत होगा? 1. दि- रज्जुक न्यूक्तिक अम्ल का A – प्रकार 2. दि- रज्जुक न्यूक्तिक अम्ल का B – प्रकार 3. दि- रज्जुक न्यूक्तिक अम्ल का B – प्रकार 4. दोनों एकल रज्जुक की तरह रहेंगे	2.0	0.50

		2		ï
		A3 3		
		3		
		3		
		A4 4		
		4		
bjec	tive Question			
4	703024	Which one of the following pairs of metabolic intermediates does NOT provide a backbone carbon skeleton for the synthesis of amino acids?	2.0	0.50
		Succinate and citrate		
		2. 3-phosphoglycerate and phosphoenolpyruvate		
		3. Ribose 5-phosphate and erythrose 4-phosphate		
		4. α-ketoglutarate and oxaloacetate		
		निम्न उपापचयी मध्यवर्ती युग्मों में से कौन सा अमीनो अम्लों के संश्लेषण हेतु		
		कार्यन कंकाल आधार उपलब्ध नहीं कराता है?		
		1. सक्सीतेट और साइट्रेट		
		2. 3-फास्फोग्लिसिरेट और फास्फोइनॉलपाइरुवेट		
		3. राइबोस 5-फास्फेट और एराइथोस 4-फास्फेट		
		4. α-कीटोग्लूटारेट और आक्सेलोएसिटेट		
		A1 1		
		1		
		A2 2		
		2		
		A3 3		
		3		
		A4 4 :		
		4		
	tive Question			
5	703025	Fifteen spontaneous Ara ⁻ mutants of <i>E.coli</i> that were not able to utilize arabinose as a sole carbon source in minimal synthetic medium at 42°C were isolated. However, interestingly all these mutants were able to use arabinose as the sole carbon source at 30°C. Based on the above information, which one of the following options represents the most likely type of the mutations?	2.0	0.50
		1. Deletions		
		2. Inversions		
		3. Frameshift mutations		
		4. Mis-sense mutations		

E. coli के पन्द्रह स्वाभाविक Ara उत्परिवर्तियों, जो कि 42°C पर न्युनतम कृत्रिम माध्यम में एरेबिनोज को एकमात्र कार्बन स्रोत के रूप में उपयोग करते में समर्थ नहीं थे, प्रथक किये गए । तथापि रोचक ढंग से ये सभी उत्परिवर्ती 30°C पर एरेबिनोज को एकमात्र कार्बन स्रोत के रूप में उपयोग करने में समर्थ थे। उपरोक्त सूचना के आधार पर, निम्न विकल्पों में से कौन सबसे संभावित उत्परिवर्तनों के प्रकार को प्रदर्शित करता है? 1. विलोपन 2. प्रतिलोपत 3. प्राधार-सृति उत्परिवर्तन 4. अपार्थक उत्परिवर्तन A1 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 703026 2.0 0.50 Which one of the following statements about distribution of chromosomes within the interphase nucleus of a mammalian cell is correct? 1. Chromosomes are randomly distributed within the nuclear volume. 2. The gene-poor chromosomes tend to locate towards the nuclear envelope. 3. The larger chromosomes tend to locate at the nuclear periphery. 4. Centromeric region of all the chromosomes tend to concentrate at the center of the nucleus. एक स्तनी कोशिका के अंतरावस्था केन्द्रक के अंदर गुणसूत्रों के वितरण के बारे में, तिस्त कथतों में से कौत सा एक सत्य है? 1. गुणसूत्र, केन्द्रकीय आयतन के भीतर अनियमित रूप से वितरित होते हैं । 2. जीन-न्यून गुणसूत्रों की, केन्द्रीय आवरण की ओर स्थित होने की प्रवृति होती 3. बड़े गुणसूत्रों की केन्द्रकीय परीधि पर स्थित होते की प्रवृत्ति होती है। 4. सभी गुणसूत्रों के सूत्रकेन्द्रकीय क्षेत्र की केन्द्रक के मध्य में एकत्रित होते की प्रवृत्ति होती है। A1 1 A2 2 2 A3 3 A4 4

7030	Which cell cycle phase is typically the shortest in mammalian cells?	2.0	0.50
	1. G0 phase		
	2. G1 phase		
	3. G2 phase		
	4. Mitosis		
	स्तनी कोशिकाओं में निम्न में से कौन सी कोशिका चक कला सामान्यतः सबसे		
	छोटी होती है?		
	1. G0 कला		
	2. G1 কলা		
	3. G2 ফলা		
	4. समस्त्रण		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
jective Q			
7030	Porins, which are normally present on the outer mitochondrial membrane, reach their destination by	2.0	0.50
	 direct synthesis of porins on mitochondria membrane by the mitochondrial protein synthesis machinery. 		
	synthesis on the ER and transport via vesicles to the mitochondria.		
	synthesis in the cytosol, import by TOM complex and insertion from the inter-mitochondrial membrane space.		
	 synthesis in the cytosol, import by TIM complex and insertion in the membrane. 		
	पोरिन्स, जो कि सामान्यतः सूत्रकणिका के बाहरी झिल्ली में पाए जाते हैं, अपने		
	गंतय्य तक निम्न द्वारा पहुंचते हैं.		
	 स्वकणिकीय प्रोटीन संश्लेषण तंत्र द्वारा पोरिन्स का स्वकणिका झिल्ली पर सीधे संश्लेषण । 		
	2. ER पर संश्लेषण तथा पुटिका द्वारा कणिकासूत्र को अभिगमन।		
	3. कोशिकाद्रव में संश्लेषण, TOM सिन्मश्र द्वारा आयात तथा अंतर-सूत्रकणिका		
	झिल्ली अंतराल से निवेशन।		
	4. कोशिकाद्रव में संश्लेषण, TIM सिम्मश्र द्वारा आयात तथा झिल्ली में निवेशन।		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	3		

	A4 4		
	4		
bjective Question			
703029	During replication, over-winding of DNA is caused by and removed by 1. primase, topoisomerase 2. primase, single stranded binding protein 3. helicase, gyrase 4. helicase, DNA polymerase पतिकृतियल के दौराल, DNA का अतिघुमाय के द्वारा होता है तथाके दारा हटाया जाता है, 1. पाइमेज, टोपोआइसोमरेज 2. पाइमेज, एकल रज्जुक बंधल पोटील 3. हैलिकेज, गाइरेज 4. हैलिकेज, DNA पॉलीमरेज Al 1 1 A2 2 2 A3 3 3 A4 4	2.0	0.50
	4		
bjective Question 703030		2.0	0.50
0 703030	P-bodies are discrete cytoplasmic collections of RNAs and proteins that are involved in: 1. Deadenylation, decapping and mRNA degradation 2. Deadenylation and mRNA degradation only 3. Deadenylation and decapping only 4. Decapping and mRNA degradation only P-बॉडीज, RNAs और प्रोटीनों का विविक्त कोशिकाद्रव्यीय संग्रह हैं जो कि सिम्मिलित होते हैं: 1. विएडिनलीकरण, अनाच्छादन और mRNA का क्षय 2. केवल विएडिनलीकरण तथा mRNA का क्षय 3. केवल विएडिनलीकरण तथा अनाच्छादन 4. केवल अनाच्छादन तथा mRNA का क्षय A1 1 1 1 1 1		0.50

	A4 4		
	4		
Objective Question			
703031	Which one of the following functions is NOT facilitated by a tmRNA?	2.0	0.50
	 Addition of a stop codon at the 3' end of a defective and/or truncated mRNA. 		
	Addition of a proteolysis-inducing tag at carboxyl terminus of unfinished polypeptide.		
	Release of defective and/or truncated mRNA from the ribosome.		
	Recycling of the stalled ribosomes.		
	निम्न कार्यों में से कौन सा एक tmRNA द्वारा संपादित नहीं होता?		
	1. एक दोषपूर्ण तथा/अथवा रूंडित mRNA के 3' छोर पर समापक प्रकृट का		
	जुडता ।		
	2. अधूरे पॉलीपेप्टाइड के कार्बोक्सिल सिरे पर प्रोटीन-अपघटन प्रेरक टैग का		
	जुडना ।		
	3. राइबोसोम से दोषपूर्ण तथा/अथवा कंडित mRNA की मुक्ति।		
	4. स्थिर राइबोसोमॉ का पुनर्चक्रण ।		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Question			1/4
			0.50
703032	RNA polymerase is an enzyme that transcribes DNA sequences into RNA. Which one of the following is NOT a property of the RNA polymerase?	2.0	0.50
703032		2.0	0.30
703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide	2.0	0.30
703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3 OH group 2. RNA polymerases have high fidelity due to the action of proof-reading	2.0	
703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by	2.0	0.30
703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II	2.0	
703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II 4. RNA polymerases initiate RNA synthesis from defined regions of DNA	2.0	
32 703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II 4. RNA polymerases initiate RNA synthesis from defined regions of DNA RNA पॉलीमरेज एक एन्जाइम है जो DNA अनुक्रम को RNA में अनुलेखित करता	2.0	
32 703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II 4. RNA polymerases initiate RNA synthesis from defined regions of DNA RNA पॉलीमरेज एक एन्जाइम है जो DNA अनुक्रम को RNA में अनुलेखित करता है । तिम्ल में से कौन RNA पॉलीमरेज का गुणधर्म नहीं है? 1. RNA पॉलीमरेजेज मुक्त 3'OH समूह प्रदान करने वाले प्रारंभक के बिना RNA संश्लेषण को प्रारंभ करते हैं। 2. RNA पॉलीमरेजेज में पुफवाचन एण्डोन्यूक्लियेज सक्रियता की क्रिया के	2.0	
32 703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II 4. RNA polymerases initiate RNA synthesis from defined regions of DNA RNA पॉलीमरेज एक एन्जाइम है जो DNA अनुक्रम को RNA में अनुलेखित करता है । तिम्त में से कौत RNA पॉलीमरेज का गुणधर्म नहीं है? 1. RNA पॉलीमरेजेज मुक्त 3'OH समूह प्रदान करने वाले प्रारंभक के बिना RNA संश्लेषण को प्रारंभ करते हैं। 2. RNA पॉलीमरेजेज में पुफवाचन एण्डोन्यूक्लियेज सिक्रयता की क्रिया के कारण उच्च संलग्नता होती है।	2.0	
32 703032	Which one of the following is NOT a property of the RNA polymerase? 1. RNA polymerases initiate RNA synthesis without primers that provide a free 3'OH group 2. RNA polymerases have high fidelity due to the action of proof-reading endonuclease activity 3. In eukaryotes, RNA that encodes ribosomal proteins is transcribed by RNA polymerase II 4. RNA polymerases initiate RNA synthesis from defined regions of DNA RNA पॉलीमरेज एक एन्जाइम है जो DNA अनुक्रम को RNA में अनुलेखित करता है । तिम्ल में से कौन RNA पॉलीमरेज का गुणधर्म नहीं है? 1. RNA पॉलीमरेजेज मुक्त 3'OH समूह प्रदान करने वाले प्रारंभक के बिना RNA संश्लेषण को प्रारंभ करते हैं। 2. RNA पॉलीमरेजेज में पुफवाचन एण्डोन्यूक्लियेज सक्रियता की क्रिया के	2.0	

1. Tetanospasmin is a seciated with Tetanus 2. Tetanospasmin is a neurotoxin 3. Tetanospasmin facilitates the release of gamma-aminobutyric acid at synapses 4. Immunization with toxoids is used for the prevention of tetanus. गलत कथन को चुनिए: 1. टिटेनोस्पेस्मिन टिटेनस से संबंधित हैं। 2. टिटेनोस्पेस्मिन एक लंबिआविष हैं। 3. टिटेनोस्पेस्मिन फिनेप्सेनों पर गामा-अमीनोध्यूटाइरिक अन्ल के निर्गमन की सुविधा प्रदान करता है। 4. आविषाम से प्रतिरक्षण का उपयोग टिटेनस के बचाव में किया जाता है। Al 1 1 A2 2 2 A3 3 3 A4 4 4 4 CObjective Question			1 A2 2 2 A3 3 3 A4 4		
Choose the INCORRECT statement: 1. Tetanospasmin is associated with Tetanus 2. Tetanospasmin is a neurotoxin 3. Tetanospasmin is a neurotoxin 3. Tetanospasmin facilitates the release of gamma-aminobutyric acid at synapses 4. Immunization with toxoids is used for the prevention of tetanus. ### गाउँ क्षेत्र कं चुनिएः 1. टिटेलोस्पेरिमन टिटेलस से संबंधित हैं। 2. टिटेलोस्पेरिमन टिटेलस से संबंधित हैं। 3. टिटेलोस्पेरिमन सिलेप्सेजो पर गामा-अमीलोप्यूटाइरिक अन्स के लिगेमन की सुविधा प्रदाल करता है। 4. आविधाम से प्रतिरक्षण का उपयोग टिटेलस के बचाव में किया जाता है। Al 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Questions Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphorhositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN					
Choose the INCORRECT statement: 1. Tetanospasmin is associated with Tetanus 2. Tetanospasmin is a neurotoxin 3. Tetanospasmin facilitates the release of gamma-aminobutyric acid at synapses 4. Immunization with toxoids is used for the prevention of tetanus. मतत कथन को चुनिए: 1. टिटेलोस्पेस्मिन टिटेलस से संबंधित हैं। 2. टिटेलोस्पेस्मिन सकेटोलस हैं। 3. टिटेलोस्पेस्मिन सकेटोलसे हैं। 4. आविषाम से पतिरक्षण का उपयोग टिटेलस के बचाव में किया जाता है। 4. आविषाम से पतिरक्षण का उपयोग टिटेलस के बचाव में किया जाता है। Al 1 Al 2 2 Al 3 3 Al 4 4 103034 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inoble head to generate a variety of phosphorylated PI ligits called phosphorylations. In a cell signaling event, the enzyme that directly converts PI(4,5)P2 to PI(3,4,5)P3 is: 1. PI3-Kinase 2. PLC\$ 3. PTEN	Ohio	ctive Onestion			
synapses 4. Immunization with toxolds is used for the prevention of tetanus. गत्तत कथत को चुनिए: 1. टिटेनोस्पेस्मिन एक तंबिआयिष है। 2. टिटेनोस्पेस्मिन एक तंबिआयिष है। 3. टिटेनोस्पेस्मिन सिनेप्सेजों पर गामा-अमीनोध्युटाइरिक अन्स के निगमन की सुविधा प्रदान करता है। 4. आविधाम से प्रतिरक्षण का उपयोग टिटेनस के बचाव में किया जाता है। A1 1 1 A2 2 2 A3 3 3 A4 4 4 1 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphoinositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P2 to PI(3,4,5)P3 is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			Tetanospasmin is associated with Tetanus Tetanospasmin is a neurotoxin	2.0	0.30
2. टिटेलोस्पेस्मिल एक लंबिआविष है। 3. टिटेलोस्पेस्मिल सिलंप्सेजों पर गामा-अमीलोब्यूटाइरिक अस्ल के लिर्गमल की सुविधा प्रदाल करता है। 4. आविषाभ से प्रतिरक्षण का उपयोग टिटेलस के बचाव में किया जाता है। A1 1 1 A2 2 2 2 A3 3 3 3 44 4 4 4 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholnositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P2 to PI(3,4,5)P3 is: 1. PI3-Kinase 2. PLCØ 3. PTEN			synapses 4. Immunization with toxoids is used for the prevention of tetanus.		
सुविधा प्रदान करता है। 4. आविषाभ से प्रतिरक्षण का उपयोग टिटेन्स के बचाव में किया जाता है। A1 1 1 A2 2 2 A3 3 3 A4 4 4 4 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphoinositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN					
A1 1 1 A2 2 2 A3 3 3 A4 4 1 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			सुविधा प्रदान करता है।		
1 A2 2 2 A3 3 3 A4 4 1 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphoinositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			Al ,		
2 A3 3 3 A4 4 4 4 Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			1		
Objective Question Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholnositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			2		
Dispective Question Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphoinositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN			3		
Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phosphoinositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$\beta\$ 3. PTEN			AT 4		
Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholnositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is: 1. PI3-Kinase 2. PLC\$ 3. PTEN	Oh:	nina Outri			
2. PLCB 3. PTEN			Phosphatidylinositol (PI) is unusual among membrane lipids because it can undergo reversible phosphorylation at multiple sites on the inositol head to generate a variety of phosphorylated PI lipids called phospholnositides. In a cell signaling event, the enzyme that directly converts PI(4,5)P ₂ to PI(3,4,5)P ₃ is:	2.0	0.50
			2. PLCβ		

झिल्ली के लिपिइस में फास्फोटाइडिलइलोसिटोल (PI) असामान्य है क्योंकि इलोसिटोल शीर्ष पर कई स्थलों पर उत्क्रमणीय फास्फोरिलिकरण से विभिन्न प्रकार के फॉस्फोराइलटेड PI लिपिइस का निर्माण होता है जिन्हें फास्फोइनोसिटाइडस कहते हैं। कोशिकीय संकेतन की घटना में, PI(4,5)P2 को सीधे PI(3,4,5)P3 में परिवर्तित करते वाला एन्जाइम है:

- PI3-काइतेज
- 2. PLCB
- 3. PTEN
- 4. प्रोटीन काइनेज B

A1 1

A2 2

2

A3 3

3

A4 4

Objective Question

703035

Column X represents the type of junctions and column Y represents the proteins associated with the junctions.

2.0

0.50

	Column X		Column Y
A.	Anchoring junction	Í.	Claudins
В.	Occluding junction	ii.	Delta-Notch
C.	Channel-forming junction	iii.	Desmoglein
D.	Signal-relaying junction	İV.	Connexin

Which one of the following options is a correct match between terms of Columns X and Y?

- 1. A-ili, B-i, C-iv, D-ii
- 2. A-Iv, B-I, C-Iv, D-III
- 3. A-iii, B-ii, C-iv, D-i
- 4. A-ii, B-iii, C-i, D-iv

स्तंभ X संधियों के प्रकार प्रदर्शित करता है एवं स्तंभ Y संधि से संबंधित प्रोटीनों को प्रदर्शित करता है।

5	स्तंभ X		स्तंभ Y
A	संलागी संचि	i.	क्लौडिन्स
B.	अधिविष्ट संधि	ii.	डेल्टा-नॉच
C.	प्रणालजनक संधि	III.	डेस्मोग्लेइन
D.	संकेत प्रसारण (रिले) संधि	iv.	कनेक्सिन

निम्न विकल्पों में से कौन स्तंभ X और Y के बीच सही सुमेल है?

- 1. A-III, B-I, C-IV, D-II
- 2. A-iv, B-i, C-iv, D-iii
- 3. A-iii, B-ii, C-iv, D-i
- 4. A-ii, B-iii, C-i, D-iv

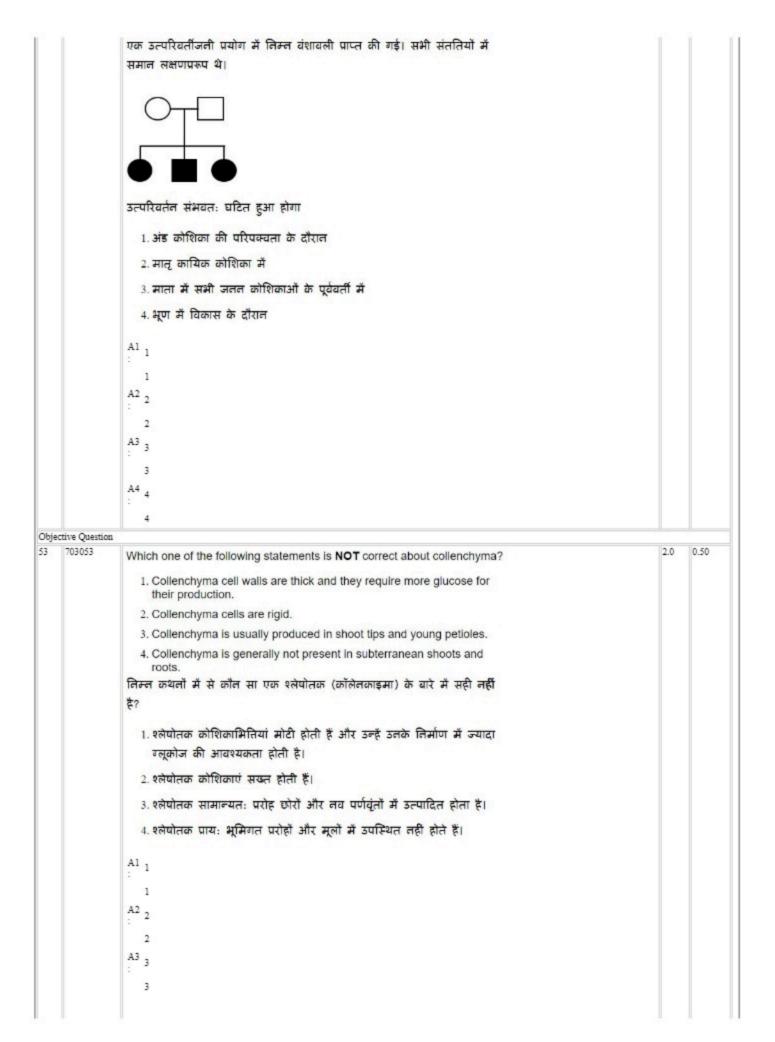
A1 1

	1 42		
	A2 2		
	2		
	A3 :		
	3		
	A4 4		
Objective Quest	4		
6 703036	Kaposi's sarcoma is caused by	2.0	0.50
	Epstein-Barr virus HIV and HHV-8		
	3. HTLV type1		
	4. HPV		
	कपोसी सार्कोमा किसके द्वारा होता है?		
	1. एपस्टियन-बार विषाणु		
	2. HIV तथा HHV-8		
	3. HTLV टाइप 1		
	4. HPV		
	A1 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Quest			1/4
703037	Sperm, which helps in penetration of the egg during fertilization in mammals, contains	2.0	0.50
	lysin, hyaluronidase		
	fertilizin, hyaluronidase		
	3. lysin, hyaluronic acid		
	4. fertilizin, hyaluronic acid शुक्राणु जो कि स्तनधारियों में निषेचन के दौरान अण्ड-वेधन में सहायता		
	करता हैको धारित करता है ।		
	1. लायसिन, हायलूरांनिडेज		
	2. फर्टीलाइजिन, हायलूरांतिडेज		
	3. लायसिन, हायलूरॉनिक अस्ल		
	4. फर्टीलाइजिन, हायलूरॉनिक अम्ल		
	A1 1		
	1		
	A2 2		

	2		Ĩ
	A3 3		
	3		
	A4 4		
	* * ·		
Obi a stiera Oraști	4		
Objective Question 703038	Which one of the following statements regarding the developmental	2.0	0.50
	potential of cells in embryo is INCORRECT?		
	The cells of the 4-cell stage mouse embryo are totipotent.		
	The cells of inner cell mass of the mouse blastocyst differentiate into trophectoderm, mesoderm and endoderm.		
	Spermatogonial stem cells in testis are unipotent.		
	 Haematopoietic stem cells which can differentiate into blood cells are multipotent. 		
	भूण में कोशिकाओं की परिवर्धन क्षमता के बारे में निम्त कथतों में से कौत सा		
	सही नहीं है?		
	1. चूहे के भूण में 4-कोशिकीय अवस्था की कोशिकाएं पूर्णशक्त होती हैं।		
	2. चूहे की कोरकपुटी के आंतरिक कोशिका द्रव्यमान की कोशिकाएं		
	पोषवाद्यजनस्तर, मध्यजनस्तर तथा अंतर्जनस्तर में विभेदित होती हैं।		
	3. वृषण में शुकाणुजनक मूल कोशिकाएं एकशक्त होती हैं।		
	4. रक्त काशिकाओं में विभेदित होते वाली रक्तोत्पादक मूल कोशिकाएं बहुशक्त		
	होती हैं।		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4 :		
	4		
Objective Question 703039		2.0	0.50
	Which one of the following statements is correct for dosage compensation in human?	2.0	0.20
	 X-chromosome inactivation in female occurs in a zygote immediately after fertilization. 		
	2. X-chromosome inactivation is non-random, in some individuals		
	maternal X is inactivated while in others paternal X-chromosome is inactivated.		
	Y-chromosome of males is seen as Barr body.		
	4. The body of female is a mosaic of cells, some having paternal X- and		
	others having maternal X-inactivated.		

Objective Question	1 A2 2 2 A3 3 3 A4 4 4		
	2. AP2 3. AP3/PI 4. AG पुष्प विकास के दौरान, निम्न पुष्प समापवर्धी जीनों में से कौन सा सभी चार चक्रों में अनुलेखित होता है? 1. AP1 2. AP2 3. AP3/PI 4. AG		
ojective Question 703040	मातव में मात्रा क्षेतिपूर्ति (डोसेज कम्पलसंसत) के लिए तिम्त में से कौत सा कथत सत्य है? 1. मादा में तिषेचत के तुरंत बाद, युग्मज में X-गुणसूत्र का तिष्क्रियण होता है। 2. X-गुणसूत्र तिष्क्रियण अयाहच्छिक (ताँत-रेंडम) होता है, कुछ व्यष्टियों में मात् X तिष्क्रिय होता है जब कि अन्य में पितृ X-गुणसूत्र तिष्क्रिय रहता है। 3. तरों में Y-गुणसूत्र बार-बाँडी के रूप में दिखता है। 4. मादा शरीर कोशिकाओं का किमीर है, कुछ में पितृ X- तथा अन्य में मातृ X- तिष्क्रिय होते हैं। All 1 1 A2 2 2 A3 3 3 A4 4 4 Which one of the following floral homeotic genes is transcribed in all four whorls during flower development? 1. AP1	2.0	0.50

Which one of the following statements is INCORRECT regarding plant phytochrome (PHY), cyanobacterial phytochrome1 (Cph1) and bacterial phytochrome like protein (BphP)? 1. PHY has two PRD domains in the C-terminal molety. 2. Cph1 and BphP has histidine kinase domains at the N-terminal 3. GAF domain is present in N-terminal molety of PHY, Cph1 and BphP. 4. The cysteine residue that forms the linkage is located in the GAF domain in canonical phytochromes such as PHY and Cph1. निस्त में से कौन सा कथन पादप फाइटोक्रोम (PHY), साइनोबेक्टीरिया फाइटोक्रोम 1 (Cph1) तथा जीवाणु फाइटोक्रोम जैसे प्रोटीन (BphP) के बारे में सही नहीं है? 1. PHY के C-छोर पर दो PRD प्रक्षेत्र होते हैं । 2. Cph1 तथा BphP के N-छोर पर हिस्टिडीन काइनेज प्रक्षेत्र होते हैं। 3. GAF प्रक्षेत्र PHY, Cph1 तथा BphP के N-छोर पर उपस्थित होता है। 4. सिस्टीन अवशेष जो कि सहलग्नता करता है, PHY और Cph1 जैसे विहित फाइटोक्रोमों के GAF प्रक्षेत्र में स्थित होता है। Al 1 1 A2 2 2 A3 3 3 A4 4 Objective Question 703042 2.0 0.50 Which one of the following is referred to as tuberonic acid? 1. Methyl jasmonate 2. cis-jasmone 3. Jasmonoyl-1-β-glucose 4. 12-Hydroxy-(+)-7-isojasmonate निम्न में से कौन ट्यूबेरोनिक अम्ल कहलाता है? 1. मिथाइल जैसमोनेट 2. cis-जैसमोन 3. जैसमोताईल-1-β-ग्लूकोज 4. 12-हाइड्रोक्सी-(+)-7-आइसोजैसमोनेट A1 1 1 A2 2 2 A3 3 3 A4 4


Objective Question		lle e	lle ee
3 703043	The defect in a major semi-dwarfing gene of rice, sd-1, leads to cultivar with short, thick culms and improved lodging resistance. The gene is related to which one of the following phytohormones? 1. Gibberellins 2. Abscisic acid 3. Jasmonic Acid 4. Sallicylic acid चावल का एक प्रमुख अर्ध-बौना जीन sd-1, मैं बुटि, से छोटे, मोटे इंठल तथा उन्नत लॉर्जिंग प्रतिरोधी फसल बनती हैं। यह जीन निम्न में से किससे संबंधित हैं? 1. जिबरेलिन्स 2. एबसेसिक अम्ल 3. जैसमोनिक अम्ल 4. सैलिसिलिक अम्ल 4. सैलिसिलिक अम्ल All 1 1 A2 2 2 A3 3 3 A4 4	2.0	0.50
	4		
Objective Questio	1		11-
703044	In the model plant Arabidopsis thaliana, methionine is a precursor amino acid in the biosynthesis of 1. Alkaloids 2. Glucosinolates 3. Phenolics 4. Terpenoids तमूला (मोडेल) पाँधे एरेबिडोप्सिस थैलियाला (Arabidopsis thaliana) में निम्ल के जैवसंश्लेषण में मेथियोलील एक पूर्ववर्ती अमीलो अम्ल है 1. पेल्केलाइड्स 2. ग्लूकोसिलोलेट्स 3. फीलालिक्स 4. टपींनॉयड्स Al 1 1 1 A2 2	2.0	0.50

		A4 4 :		
		4		
	tive Question		la.	la
45	703045	How much hemoglobin is present approximately in each normal human red blood cell?	2.0	0.50
		1. 19 pg		
		2. 29 pg		
		3. 39 pg		
		4. 49 pg		
		पत्येक सामान्य मानव लाल रक्तकणिका में लगभग कितना हीमोग्लोबिन		
		उपस्थित होता है?		
		1. 19 pg		
		2. 29 pg		
		3. 39 pg		
		4. 49 pg		
		A1 1		
		1		
		A2 2		
		2		
		A3 3		
		3		
		A4 4		
		4		
	tive Question			
46	703046	Which one of the following is involved in the pinching-off of the neck of invaginating coated pit to form endocytotic vesicle at the pre-synaptic terminal?	2.0	0.50
		1. Synaptojanin		
		2. AP2		
		3. Clathrin		
		4. Dynamin		
		निम्न में से कौन सा एक पूर्व-सिनैप्टिक सिरा में अंतःपुटी पुटिका बनाने के लिए अंतर्वलीय लेपित गर्त की ग्रीवा के संकुचन में शामिल होता है?		
		1. सितंप्टोजैतित		
		2. AP2		
		3. क्लैथिन		
		4. डायनामित		
		A1 1		
		1		
		A2 2		
		2		
		A3 3		
		3		

	A4 4		
	4		
Objective Questi	OD .		
7 703047	Aldosterone is synthesized exclusively in zona glomerulosa due to the presence of enzyme in addition to a dehydrogenase.	2.0	0.50
	1. 11 β-hydroxylase		
	2. 17 α-hydroxylase		
	3. 18-hydroxylase		
	4. 21-hydroxylase		
	डिहाइड्रोजिनेज के अतिरिक्त पूर्णतः गुच्छस्तर में ऐल्डोस्टेरोन का संश्लेषण एन्जाइम की उपस्थिति के कारण होता है ।		
	1. 11 β-हाइड्रॉक्सिलेज्		
	2. 17 α-हाइड्रॉक्सिलेज्		
	3. 18-हाइड्रॉक्सिलेज्		
	4. 21-हाइड्रॉक्सिलेज्		
	A1 1		
	l l		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Question 18 703048		2.0	0.50
103040	Which one of the following hormones has no supply store in the cells where it is synthesized?	2.0	0.30
	1. Catecholamines		
	2. Insulin		
	3. T ₃ and T ₄		
	4. Steroids		
	निस्न में से किस एक हार्मीन का, उस कोशिका में कोई आपूर्ति भंडार नहीं होता		
	है जहां यह संश्लेषित होता है?		
	1. कैटेकोलामाइन्स		
	2. इन्स्लिन		
	3. T₃ और T₄		
	4. स्टेरॉयड्स		
	A1 1		
	1 42		
	A2 2		
	A3 3		
	⊕"3		
	3		

	A4 4		
	4		
jective Quest	on		
703049	Which one of the following is true for Genome-wide association study (GWAS)? 1. There is a need to make controlled crosses or work with human families with known parent-offspring relationship. 2. All alleles in the population are assayed at the same time. 3. Single nucleotide polymorphisms (SNPs) cannot be used for such studies. 4. Knowledge about candidate genes is essential. ितम्त में से कौत सा एक संजीत-विस्तृत संबंध अध्ययत (GWAS) के लिए सही है? 1. ज्ञात जनक-संतित संबंधों वाले मानव परिवारों के साथ कार्य करते या तियंत्रित संकरण कराने की आवश्यकता है।	2.0	0.50
	2. आवादी में सभी युग्मविकल्पीयों का एक ही समय में परीक्षण किया जाता		
	है।		
	 ऐसे अध्ययनों के लिए एकल न्यूक्लियोटाइड बहुरूपता (SNPs) का उपयोग नहीं किया जा सकता है। 		
	4. परीक्षण किए जाने वाले (केंडीडेट) जीन के बारे में जानकारी आवश्यक है।		
	A1 1		
	1 A2 2		
	2		
	A3 3		
	3 A4 ₄		
	4		
703050	Which one of the following options contains only those types of mapping	2.0	0.50
	populations that are characterized by 'true-breeding' individuals?		
	RILs and F2 populations		
	2. F2 populations and BC1F2		
	Doubled haploid populations and BC1F2		
	4. Doubled haploid populations and RILs		
	तिम्त में से कौत सा एक विकल्प केवल उन मापित आबादियों के लिए है जो वास्तविक-प्रजनन व्यष्टियों द्वारा अभिलक्षणित होती है?		
	1. RILs और F2 आबादियां		
	2. F2 आबादियां और BC1F2		
	3. द्विगुणित अगुणीय आवादियां और BC1F2		
	4. द्विगुणित अगुणीय आबादियां और RILs		
	A1 1		

	A2 2	1.1
	The second secon	
	2	
	A3 3	
	3	
	A4 4	
	4	
jective Que	ation.	
703051	In a family, the father has an X-linked mutation causing a late-onset lethal disorder and the mother is not a carrier. Based on the above information, which one of the following statements about the children the couple may have is correct? 1. There is a 50% chance that the son will show the disorder.	2.0 0.50
	No children will show the disorder.	
	 The probability that the parents have a daughter carrying a mutant allele is 25%. 	
	All daughters will carry the mutant allele.	
	एक परिवार में, पिता में देर से शुरूआत करने वाला घातक विकार वाला X-	
	सहलग्न उत्परिवर्तन है और माता वाहक नहीं है। उपरोक्त सूचना के आधार पर	
	निम्न में से कौन सा एक कथन दंपति के होने वाले बच्चों के बारे में सही है?	
	1.50% संभावना है कि लड़के विकार प्रदर्शित करेंगे।	
	2. कोई बच्चा विकार नहीं दिखाएगा।	
	 दम्पति की एक पुत्री में उत्परिवर्ती युग्मविकल्पी के धारण करने की संभावना 	
	25% है।	
	 सभी पुत्रियां उत्परिवर्ती युग्मविकल्पी धारित करेंगी। 	
	Al 1	
	1	
	A2 2	
	2	
	A3 3	
	3 A4 4	
	° 4	
	4	
ective Que:		2.0 0.50
	In a mutagenesis experiment, the following pedigree was obtained. All progeny had the same phenotype.	
	Co. N. Market Control of the Control	
	The mutation is most likely to have occurred	
	during maturation of the egg cell.	
	during maturation of the egg cell. in the maternal somatic cell.	

	A4 4		Ĩ
	4		
bjective Question			
bjective Question 4 703054	Which one of the following terms describes the biological classification system based on common ancestry? 1. Linnean taxonomy 2. Binomial nomenclature 3. Phylogenetic classification 4. Rank based classification विम्न में से कौन सा एक शब्दावली, समान वंशावली पर आधारित जैविक वर्गीकरण को वर्णित करती है? 1. तिनीयन वर्गीकरण 2. द्विनाम नामांकरण 3. जातिवृत्तीय वर्गीकरण 4. श्रेणी आधारित वर्गीकरण A1 1 1 A2 2 2 A3 3 3 A4 4	2.0	0.50
	A4 4		
	4		
bjective Question	**************************************		
5 703055	Select the species that was thought to be extinct because of climate change and habitat loss, but was recently rediscovered in the year 2022. 1. Nicobar Wart Frog 2. Harlequin Frog 3. Niligiri Cricket Frog 4. Lemur Leaf Frog उस जाति का चयन कीजिए जिसे जलवायु परिवर्तन और प्राकृतिक वास में हास के कारण विलुप्त माना गया, परन्तु हाल ही में वर्ष 2022 में पुनः खोजा गया। 1. निकोबार वार्ट मेडक 2. हार्लक्युन मेडक 3. नीलगिरी क्रिकेट मेडक 4. लिमर लीफ मेडक	2.0	0.50

	A4 4	
	4	
Objective Question	1	
56 703056	Which one of the following four plant families has the largest number of species? 1. Brassicaceae 2. Cucurbitaceae 3. Cactaceae 4. Rosaceae तिम्ल चार पादप परिवारों में किसमें प्रजातियों की सर्वाधिक संख्या होती है? 1. वैसिकसी 2. कुकरबिटेसी 3. कैक्टेसी 4. रोजेसी A1 1 1 A2 2 2 2 A3 3 3 A4 4 4	2.0 0.5
Objective Question 57 703057	Which one of the following correctly shows the total estimated biomass of the lifeforms on Earth given here, in increasing order? 1. Bacteria < Viruses < Fungi 2. Bacteria < Fungi < Viruses 3. Viruses < Fungi < Bacteria 4. Fungi < Viruses < Bacteria 6. Far मं से कौत सा एक पृथ्वी पर जीव-रूपों के कुल अनुमानित जैवभार के बढ़ते हुए कम को दर्शाता है? 1. जीवाणु < विषाणु < कवक 2. जीवाणु < कवक < विषाणु 3. विषाणु < कवक < जीवाणु 4. कवक < विषाणु < जीवाणु 5. विषाणु < जीवाणु 6. कवक < विषाणु 7. कवक < विषाणु 8. विषाणु < जीवाणु < जीवाणु 8. विषाणु < जीवाणु <	2.0 0.3

		llas	10.00
8 703058	Which one of the following options lists landmasses that were all a part of the ancient Gondwana supercontinent? 1. Australia, New Zealand, and North America 2. Africa, Europe, India, New Zealand, and South America 3. Africa, Europe, India, Madagascar, and North America 4. Africa, Australia, Antarctica, India, Madagascar, and South America विम्ल में से कौन सा एक विकल्प भूमि के उन सभी खंडों को सूचित करता है जो प्राचीन गोंडवाना महाद्वीप का हिस्सा थे? 1. आस्ट्रेलिया, न्यूजीलैंड और उत्तरी अमेरिका 2. अफ्रीका, यूरोप, भारत, न्यूजीलैंड और दक्षिणी अमेरिका 3. अफ्रीका, यूरोप, भारत, मेडागास्कर और उत्तरी अमेरिका 4. अफ्रीका, आस्ट्रेलिया, अन्टार्कटिका, भारत, मेडागास्कर और दक्षिणी अमेरिका	2.0	0.50
	1 A2 2 2 A3 3 3 A4 4 4		
Objective Question			
9 703059	Which one of the following anthropogenic activities contributes the most nitrogen to the global nitrogen cycle? 1. Industrial production of fertilizers 2. NO _x production due to combustion of fossil fuels 3. Nitrogen fixation by soyabean farming 4. Nitrogen fixation by cultivation of legumes (excluding soyabean) तिम्ल में से कौल एक मानवजनित गतिविधि वैश्विक नाइट्रोजन चक्र में सर्वाधिक नाइट्रोजन का योगदान करती है? 1. उर्वरकों का औधोगिक उत्पादन 2. जीवाश्म इँधन के दहन द्वारा NO _x का उत्पादन 3. सोयाबीन की खेती द्वारा नाइट्रोजन का स्थरीकरण 4. दलहनों (सोयाबीन को छोड़कर) की खेती द्वारा नाइट्रोजन का स्थिरीकरण Al 1 1 A2 2 2 2 A3 3	2.0	0.50

bjective Question	1 ²⁰ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
703060	In which of the following ecosystems would the largest percentage of Net Primary Productivity (NPP) be taken up by the grazing food chain? 1. Tropical rainforest 2. Temperate deciduous forest 3. Algal seabed 4. Open ocean चराई खाद्य श्रृंखला (grazing food chain) द्वारा ग्रहण किए जाने वाले शुद्ध प्राथमिक उत्पादकता (NPP) का सर्वाधिक प्रतिशत तिम्त में से किस पारिस्थितिक तंत्र में होता है? 1. उष्णकटिबंधी वर्षावन 2. समशीतोष्ण पर्णपाती वन 3. शैवालीय समुद्रतल 4. मुक्त महासागर Al 1 1 A2 2 2 A3 3 3 A4 4	2.0	0.50
	4		
bjective Question			
703061	Which one of the following geological events in the Cretaceous had a massive impact on the climate and biodiversity of India? 1. Origin of Tibetan plateau 2. Deccan Trap volcanic activity 3. Formation of Lonar Lake 4. Origin of Himalayan mountains िक्न में से क्रिटेसियस की किस एक भूगर्भीय घटना का भारत की जलवायु और जैवविविधता पर वृहद्भ भाव था? 1. तिब्बती पठार की उत्पत्ति 2. डेक्कन ट्रेप ज्यालामुखी सिक्रयता 3. लोनर झील का निर्माण 4. हिमालयी पर्वतों की उत्पत्ति 1. विश्वती पठार की उत्पत्ति 2. डेक्क के इंग ज्यालामुखी सिक्रयता 3. लोनर झील का निर्माण 4. हिमालयी पर्वतों की उत्पत्ति 2. डेक्क विश्वता पठार की उत्पत्ति 2. डेक्क विश्वता विश्वता का निर्माण 4. हिमालयी पर्वतों की उत्पत्ति	2.0	0.50

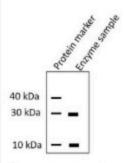
	A4 : 4		
	4		
jective Question			
703062	Monogamy in sexually reproducing animals is seemingly paradoxical given that males must maximise their number of matings for higher fitness. Yet, many birds are known to be monogamous. Which one of the following statements represents a scenario where monogamy in birds is LEAST likely to evolve? 1. Poor quality of habitat wherein resources are hard to find 2. Males guard females after mating with them 3. Mates are scattered and hard to find 4. Offspring do not require elaborate parental care क्योंक तरों की उच्च कार्ययोग्यता के लिए उत्तके सहवासों की संख्या अधिकतम होनी चाहिए, लेंगिक प्रजनत वाले प्राणियों में एकलसंगमन पकटरूप से विरोधाभासी है। फिर भी, बहुत से पक्षी एक संगमन के लिए जाने जाते हैं। निम्न कथानों में से कौन एक ऐसा परिदृश्य प्रदर्शित करता है जहां पक्षियों में एकलसंगमत कमिवकास होने की संभावता सबसे कम है? 1. पाकृतवास की निम्न गुणवत्ता जिसमें संसाधनों को ढूंढना कठिन है। 2. नर सहवास के बाद मादा की रक्षण करता है। 3. संगमसाथी विखरे हुए हैं और ढूंढना कठिन है। 4. संतित को विस्तृत पैतृक देखभाल की जरूरत नहीं होती है। Al 1 Al 2 2 Al 3 3 3 Al 44 4 4 4	2.0	0.50
703063	Sometimes similar traits or characteristics evolve in two distinct lineages	2.0	0.50
	independently, such as venoms in scorpions and snakes. This process can be described as:		
	Convergent evolution		
	2. Microevolution		
	3. Macroevolution		
	4. Divergent evolution		
	कभी-कभी समान लक्षण या विशिष्टता दो पृथक वंशावलियों में स्वतंत्र रूप से		
	विकसित होती है, जैसे कि बिच्छू और सांपों में विष। यह प्रक्रिया वर्णित की जा सकती है:		
	1. अभिसारी विकास		
	2. सूक्ष्म विकास		
	3. बृहत् विकास		

2. रक्तोत्पा 3. तंतुकोरक 4. पेशीकोरक A1 1 1			
3. Fibrobla 4. Myoblas जन्तु कोशिका	sis संवर्धन के दौरान निम्न में से किस कोशिका प्रकार को उत्तरोत्तर) के लिए ट्रिप्सिन की जरूरत नहीं है?		
Objective Question 64 703064 During animal require trypsi 1. Epithelia	al cell culture, which one of the following cell types would NOT in for passaging?	2.0	0.50

		किण्यत द्वारा ऐल्कोहॉल के उत्पादन में, ऑक्सीजन की अनुपस्थिति में यीस्ट बल्कोज को पाइरूवेट और पाइरूवेट को इथनॉल में रूपांतरित करता है। किण्यत निम्नांकित द्वारा बलाइकोलिसिस को प्रेरित करता है। 1. पुनर्निवेश संदमन को रोकने के लिए एसिटेल्डीहाइड का एल्कोहॉल में परिवर्तन		
		2. सूत्रकणिकीय ATP उत्पादन के लिए NADH का उत्पादन		
		3. एसिटेल्डीहाइड विषाक्तता को रोकना		
		4. ग्लाइकोलिसिस के लिए NAD+ का उत्पादन		
		Al 1		
		1		
		A2 2		
		2		
		A3 3		
		3		
		A4 4 :		
		4		
bjec 6	703066	Which one of the following is NOT required in the blood glucose biosensor?	2.0	0.50
		Glucose oxidase as biologically active component		
		2. Electrode as electrochemical transducer		
		3. Piezoelectric crystal as sensor		
		4. FAD as coenzyme of glucose oxidase		
		रक्त ग्लूकोज जैव-संवेदक (बायोसेंसर) में तिम्त में से किस एक की आवश्यकता		
		नहीं होती है?		
		1. जैविक रूप से सक्रिय घटक के रूप में ग्लूकोज ऑक्सीडेज		
		2. वैद्युतरासायनिक पारक्रमित्र के रूप में इलेक्ट्रोड		
		3. सुयाही के रूप में दाब वैधुत (पीजोइलेक्ट्रिक) क्रिस्टल		
		4. ग्लूकोज ऑक्सीडेज के कोएन्जाइम के रूप में FAD		
		A1 1		
		1		
		A2 2		
		*		
		2 A3 3		
		3		
		A4 4 :		
		4		
	tive Question		20	0.50
7	703067		2.0	0.50

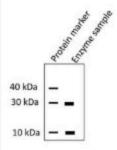
	Which one of the following combinations of excitation light and objectives gives the best lateral resolution in a fluorescence microscope?		Ī	
	1. 480nm, 63X, 1.4NA			
	2. 650nm, 63X, 1.4NA			
	3. 550nm, 100X, 1NA			
	4. 480nm, 100X, 1.1NA			
	उद्दीपन प्रकाश और अभिदृश्यक का कौन सा मेल एक प्रतिदीप्ति सूक्ष्मदर्शी में			
	सर्वाधिक क्षेतिज विभेदन पदान करता है?			
	1. 480nm, 63X, 1.4NA			
	2. 650nm, 63X, 1.4NA			
	3. 550nm, 100X, 1NA			
	4. 480nm, 100X, 1.1NA			
	A1 1			
	1			
	A2 2			
	* 50°			
	2			
	A3 3			
	3			
	A4 4			
	4			
Objective Question	1			
68 703068	Which one of the following techniques allows the study of all three types of interactions namely, protein:protein, protein:DNA, and protein:RNA?	2.0		0.50
	Differential display			
	2. Phage display			
	3. ChIP assay			
	4. Southwestern blotting			
	विस्त में से कौत सी तकवीक सभी तीन तरह की अन्योन्यक्रियाओं जैसे कि			
	पोटीन:पोटीन, पोटीन:DNA और पोटीन:RNA के अध्ययन की अनुमति देती है?			
	1. विभेदी प्रदर्शन (Differential display)			
	2. फाज प्रदर्शन (Phage display)			
	3. ChIP आमापन (ChIP assay)			
	4. साउद्देस्टर्न ब्लाटिंग (Southwestern blotting)			
	A1 1			
	1			
	A2 2			
	2			
	A3 3			
	3			
	A4 4			
	· •			
Objective Onestic				
Objective Question		2.0		0.50

	What type of electromagnetic radiation is used in biomolecular NMR spectroscopy?		
	1. Radio waves		
	2. Beta emissions		
	3. X-ray waves		
	4. Microwaves किस प्रकार के वैद्युतचुम्बकीय विकिरण का प्रयोग द्विआण्विक NMR स्पेक्ट्रोमिकी		
	में किया जाता है?		
	म किया जाता हर		
	1. रेडियो तंरगे		
	2. बीटा उत्सर्जन		
	3. X-किरण तरगें		
	4. सूक्ष्मतरंगे		
	Al 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Question			
70 703070	Which one of the following statistical methods compares the means of the populations?	2.0	0.50
	1. t-test		
	2. Chi-square test		
	3. Analysis of Variance		
	4. Principal Component Analysis		
	निम्न में से कौन सी सॉखियकीय विधि आबादियों के माध्यों की तुलना करती है?		
	1. t-परीक्षण		
	2. काई-वर्ग परीक्षण		
	3. प्रसरण-विश्लेषण		
	4. प्रमुख-घटक विश्लेषण		
	A1 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4 .		
	4		
Objective Question		140	1.00
71 703071		4.0	1.00
			J. J


The central rod domain of keratin protein is 300 amino acids in length. What is the approximate length (in A) of the rod domain if the peptide consists of i) distorted a-helix ii) true a-helix iii) anti-parallel β-sheet 1. (i) 425 A; (ii) 450 A; (iii) 1041 A 2. (i) 450 A; (ii) 450 A; (iii) 840 A 3. (i) 425 A; (ii) 425 A; (iii) 1004 A 4. (i) 340 Å; (ii) 425 Å; (iii) 104 Å किरैटिन प्रोटीन का केन्द्रीय शलाका प्रक्षेत्र 300 अमीनो अम्ल दीर्घ है। निम्न से निर्मित पेप्टाइड मे शलाका की अनुमानित लंबाई (A में) क्या होगी? i. विकृत a-कुंडली ii. वास्तविक α-कुंडली III. प्रति-समांतर β-पत्तर 1. (I) 425 A; (II) 450 A; (III) 1041 A 2. (i) 450 A; (ii) 450 A; (iii) 840 A 3. (i) 425 A; (ii) 425 A; (iii) 1004 A 4. (i) 340 Å; (ii) 425 Å; (iii) 104 Å A1 1 1 A2 2 2 A3 3 3 4 Objective Question 703072 1.00 4.0 Which one of the following nucleic acids with same concentrations in water, will form a stable stem-loop structure upon annealing by heating and flash cooling on ice? 1. 5' - GGCUUAUUUUCUUCGG -3' 2. 5' - CCGAACUUUUAUUCGG -3' 3. 5' - AUGCCAUUUUCGGCUU -3' 4. 5' - AGAGCGUUUUAUUCGG -3' तापन तथा वर्फ़ में शीतलन द्वारा अनीलन से जल में एकसमान सान्द्रता पर, निम्त में से कौत सा न्यूक्तिक अम्ले एक स्थिर स्तंभ-पाश संरचना बनाएगा? 1.5' - GGCUUAUUUUCUUCGG -3' 2.5' - CCGAACUUUUAUUCGG -3' 3. 5' - AUGCCAUUUUCGGCUU -3' 4. 5' - AGAGCGUUUUAUUCGG -3' A1 1 1 A2 2

ctive Question 703073	3 4 4 4 6 The amino acid sequence of tetrapeptides (P , Q , R) is shown below. 6) Asp-Gly-Asp-Ser Q) Gly-Ser-Arg-Gly R) Gly-Lys-Arg-Ala 6. Calculate the net charge on the above tetrapeptides at pH 7.0 6. ii. If the mixture of the above tetrapeptides is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last? 6. Shoose the correct answer given below.	4.0	1.00
ctive Question 703073	i. Calculate the net charge on the above tetrapeptides at pH 7.0 ii. If the mixture of the above tetrapeptide is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last?	4.0	1.00
ctive Question 703073 -	i. Calculate the net charge on the above tetrapeptides at pH 7.0 ii. If the mixture of the above tetrapeptide is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last?	4.0	1.00
703073 F	i. Calculate the net charge on the above tetrapeptides at pH 7.0 ii. If the mixture of the above tetrapeptides is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last?	4.0	1.00
F	i. Calculate the net charge on the above tetrapeptides at pH 7.0 ii. If the mixture of the above tetrapeptides is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last?	4.0	1.00
	i. Calculate the net charge on the above tetrapeptides at pH 7.0 ii. If the mixture of the above tetrapeptides is separated on a cation-exchange column at pH 7.0, which tetrapeptide will elute last?		
c	ii. If the mixture of the above tetrapeptides is separated on a cation- exchange column at pH 7.0, which tetrapeptide will elute last?		
C	hoose the correct answer given below.		
	1. I) P, -2; Q, +1; R, +2 and II) R		
	2. i) P, -3; Q, +2; R, +3 and ii) Q		
	3. i) P, -1; Q, +1; R, +1 and ii) P		
	4. i) P, -1; Q, +0; R, +1 and ii) R		
à	ट्रापेप्टाइडो (P, Q, R) के अमीनों अमल का अनुक्रम नीचे दर्शाया गया है ।		
	Asp-Gly-Asp-Ser Q) Gly-Ser-Arg-Gly R) Gly-Lys-Arg-Ala		
	i. pH 7.0 पर उपरोक्त टेट्रापेप्टाइडो के शुद्ध आवेश की गणना कीजिए		
	ii. यदि उपरोक्त टेट्रापेप्टाइडॉ के मिश्रण को pH 7.0 पर धनायन विनिमय		
a	र्गेलम पर पृथक किया जाय तो, कौन से टेट्रापेप्टाइड का निक्षालन अन्त में		
	गा?		
f	तेम्त में से सही उत्तर को चुनिये ।		
	1. I) P, -2; Q, +1; R, +2 और II) R		
	2. I) P, -3; Q, +2; R, +3 और II) Q		
	3. i) P, -1; Q, +1; R, +1 और ii) P		
	4. i) P, -1; Q, +0; R, +1 और ii) R		
	1 1		
	1		
1	2 2		
:	2		
1	3 3		
:			
	3 4 ₄		
	er t e Na		
ctive Question	4 :		
703074		4.0	1.00

75	703075		4.0	1.00
	tive Question			
		2 A3 3 3 A4 4 1		
		1 A2 2		
		4. A 新 C Al 1		
		3. A 3 市 B		
		2. B और D		
		1. C और D		
		D. वर्षित AMP तथा सिट्रेट बलाइकोअपघटन को संदमित करती है ।		
		C. वर्षित सिट्रेट तथा बलूकोज-6-फॉस्फेट बलाइकोअपघटन को उद्दीपित करती है ।		
		B. वर्षित AMP ग्लाइकोअपघटन को उद्दीपित करती है ।		
		A. वर्षित ATP ग्लाइकोअपघटन को संदमित करती है ।		
		क्या प्रभाव पहेगा?		
		आकस्मिक बृद्धि से एक स्तनी कोशिका में होने वाली सिक्रय ग्लाइकोअपघटित पर		
		उपापचयजों, AMP, सिट्रेट, ATP, तथा ग्लूकोज-6-फॉस्फेट की सांद्रता मे		
		3. A and B 4. A and C		
		2. B and D		
		1. C and D		
		Which one of the following represents the combination of all correct statements?		
		D. Increased AMP and citrate inhibits glycolysis.		
		C. Increased citrate and glucose-6-phosphate stimulate glycolysis.		
		B. Increased AMP stimulates glycolysis.		
		A. Increased ATP inhibits glycolysis.		
		of a sudden increase in the concentration of metabolites, AMP, citrate, ATP, and glucose-6-phosphate?		


In a mammalian cell undergoing active glycolysis, what would be the effect

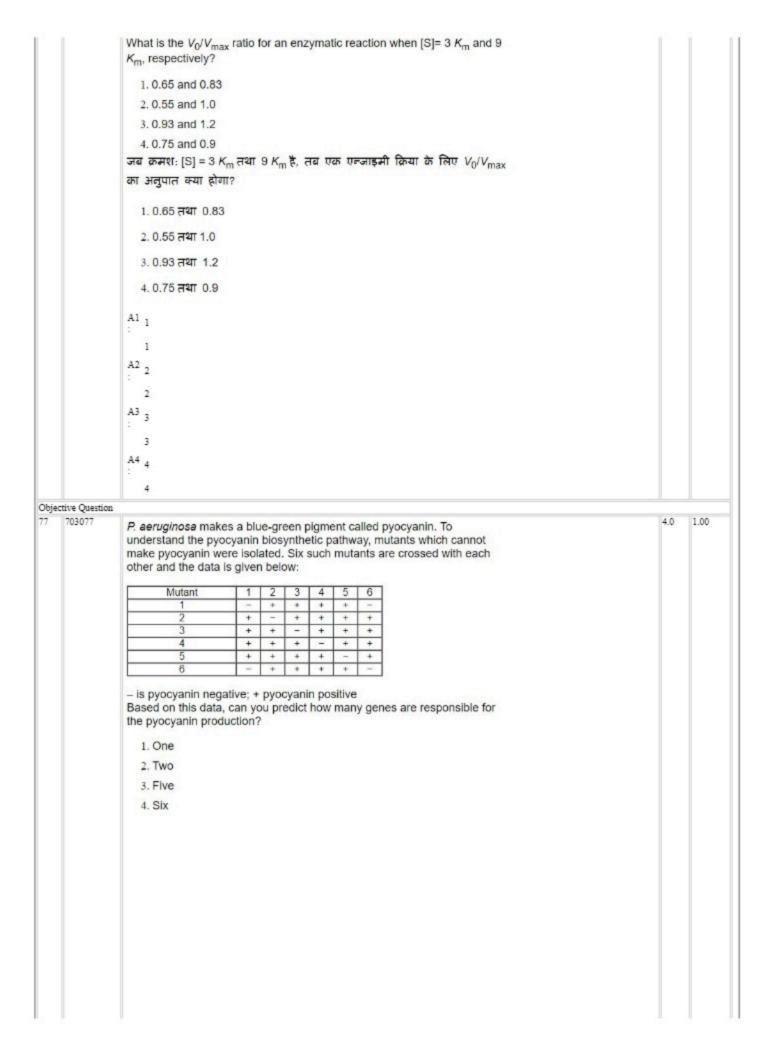
You have purified an enzyme that has a molecular weight of 60 kDa. You run this protein on an SDS-PAGE gel and get the following results.

Which of the following statements is valid for the quaternary structure of this enzyme?

- 1. Two subunits of 30 kDa
- 2. One subunit of 30 kDa and three subunits of 10 kDa
- 3. Six subunits of 10
- 4. Three subunits of 30 kDa and one subunit of 10 kDa आपने एक 60 kDa आण्विकभार वाली प्रोटीन का शुद्धिकरण (पृथक्करण) किया। आपने इस प्रोटीन को SDS-PAGE जेल में चलाया और निम्न परिणाम प्राप्त हुए।

इस प्रोटीन की चतुर्थक संरचना के बारे में निम्न में से कौन कथन वैध है?

- 1.30 kDa की दो उप-इकाईयाँ
- 2.30 kDa की एक उप-इकाई तथा 10 kDa की तीत उप-इकाईयाँ
- 3. 10 kDa की छ: उप-इकाईयाँ
- 4. 30 kDa की तीन उप-इकाईयाँ तथा 10 kDa की एक उप-इकाई


A1 1

A2 2

2

A3 3

A4 4

पी. ऐरोजिनोसा (P. aeruginosa), पायोसायनिन कहलाने वाले एक तीले-हरे वर्णक को बनाता है । पायोसायनिन के जैवसंश्लेषण पथ को समझने के लिए पायोसायनिन न बना सकने वाले उत्परिवर्तों को पृथक किया गया, इस तरह के छः उत्परिवर्तों को एक दूसरे के साथ संकरित किया गया तथा आंकड़े नीचे दिए गए हैं:

उत्परियर्त	1	2	3	4	5	6
1	-	+	+	+	+	-
2	+	-	+	+	+	+
3	+	+	-	+	+	+
4	+	+	+	-	+	+
5	+	+	+	+	-	+
6		+	+	+	+	-

- पायोसायनिन ऋणात्मक है; + पायोसायनिन धनात्मक है। इन आंकड़ों के आधार पर, क्या आप अनुमान लगा सकते हैं कि कितने जीन पायोसायनिन के उत्पादन के लिए उत्तरदायी है।

- 1. Uch
- 2. 리
- 3. पांच
- 4. छ:

A1 1

1

A2 2

2

A3 3

22

A4 4

Objective Question

78 703078

Iron (Fe) is taken up by cells via receptor-mediated endocytosis utilizing transferrin and transferrin receptor. In a cell line with a mutation in the transferrin receptor that is unable to interact with transferrin at pH (4-6), which one of the following steps will be first affected in this pathway?

- 1. Binding of transferrin to iron in plasma.
- Association of iron bound transferrin with transferrin receptor on the plasma membrane.
- 3. Release of iron in the endosomes.
- 4. Recycling of transferrin to the plasma membrane.

बाही मध्यित एन्डोसाइटोसिस द्वारा, कोशिका ट्रान्सफेरिन और ट्रान्सफेरिन बाही का उपयोग कर लौह (Fe) को बहुण करता है। ट्रान्सफेरिन बाही में उत्परिवर्तन वाली एक कोशिका वंश (cell line) जो कि pH (4-6) पर ट्रान्सफेरिन के साथ अन्योन्यक्रिया करने में असक्षम है, उसमे निम्न में इस पथ का कौन सा चरण सर्वपथम प्रभावित होगा?

- 1. जीवद्रव्य में ट्रान्सफेरिन का लौह से आवन्धन।
- जीवद्रव्यकला में लौह आबद्ध ट्रान्सफेरिन का ट्रान्सफेरिन ग्राही के साथ आवन्धन।
- 3. अन्त:कायों में लौह की अवमुक्ति।
- 4. ट्रान्सफेरिन का जीवद्रव्यकला पर पुनर्चक्रण।

4.0

1.00

100		
	Al 1	
	1 42	
	A2 2	
	2	
	A3 3	
	3	
	A4 4	
	: *	
	4	
-	e Question 03079 In yearst, temporature consistive mutante of cell cycle regulators, and 2 (the	4.0 1.00
	In yeast, temperature-sensitive mutants of cell cycle regulators, cdc2 (the key cyclin- dependent kinase), cdc13 (required for telomeric DNA replication), and cdc13 rad9 (that carries an additional mutation in the DNA damage sensor) were isolated. When grown in non-permissive temperature for a few hours, different phenotypes were observed in these mutants. Choose the option that correctly describes the most likely phenotype for all of these mutants.	1.0 2.00
	 The cdc2 mutants will arrest in G1/S, cdc13 in M and cdc13 rad9 in S- phase. 	
	 The cdc2 mutants will arrest after a few divisions in G1, cdc13 in M and cdc13 rad9 in S-phase. 	
	 The cdc2 mutants will arrest in G1/S, G2 and M, cdc13 in G2 and cdc13 rad9 will continue to divide for a few generations. 	
	 The cdc2 mutants will arrest in G1/S, G2 and M, cdc13 in G1 and M and cdc13 rad9 in all phases of the cell cycle. 	
	यीस्ट में, कोशिका चक नियामकों, cdc2 (प्रमुख साइक्लिन-निर्भर काइनेज),	
	cdc13 (अंत्यलकी DNA प्रतिकृतियन के लिए आवश्यक), तथा cdc13 rad9 (जो	
	कि DNA क्षति संवेदक में एक अतिरिक्त उत्परिवर्तन को धारित करता है) के ताप	
	संवेदी उत्परिवर्तियों को पृथक किया गया। जब उन्हे गैर अनुनात्मक तापमान पर	
	कुछ घंटों के लिए वर्षित किया गया, इन उत्परिवर्तियों में विभिन्न लक्षण प्ररूप दिखाई दिए।	
	उस विकल्प को चुनिए जो इन सभी उत्परिवर्तियों के सबसे उचित लक्षण प्ररूप को	
	वर्णित करता है।	
	 cdc2 उत्परिवर्तिया G1/S में, cdc13 M में, तथा cdc13 rad9 S-चरण में अवरोधित होगी। 	
	 cdc2 उत्परिवर्तिया कुछ विभाजनों के बाद G1 में, cdc13 M में, तथा cdc13 rad9 S-चरण में अवरोधित होगी। 	
	 cdc2 उत्परिवर्तिया G1/S, G2 तथा M में अवरोधित होगी, cdc13 G2 में अवरोधित होगी तथा cdc13 rad9 कुछ पीढियों तक विभाजन जारी रखेगी। 	
	4. cdc2 उत्परिवर्तिया G1/S, G2 तथा M में, cdc13 G1 तथा M में, तथा cdc13 rad9 कोशिका चक्र के सभी चरणों में अवरोधित होगी।	
	A1 1	
	1	
	A2 2	
	2	
	A3 3	
	3	

	A4 4	
	4	
jective Question 703080		4.0 1.00
703000	The statements below attempt to describe a few characteristics of Alu repeats found in the human genome	4.0
	A. Alu elements are a class of short interspersed elements (SINEs).	
	B. SINEs are autonomous transposons.	
	C. Alu repeat originated from cDNA copies of 7SL RNA.	
	D. Alu repeats have a relatively high AT content.	
	E. They are preferentially located in the gene-poor G chromosome bands.	
	Which one of the following options shows combination of all correct statements?	
	1. A, B and E	
	2. B, C and D	
	3. A and C only	
	4. C and E only	
	मानय संजीनों में पाए जाने वाले Alu पुनरावर्तों की कुछ विशेषताओं को वर्णित	
	करने का प्रयास निक्न कथनों में किया गया ।	
	A. Alu तत्वे, छोटे अंतःप्रकीर्ण तत्त्वों (SINEs) की श्रेणी के होते हैं।	
	B. SINEs स्वायत्त परिवर्ते (ट्रांसपोर्जोन) होते हैं।	
	C. Alu परिवर्ते 7SL RNA की cDNA प्रतिकृति से उत्पन्न होती है।	
	D. तुलनात्मक रूप से, Alu परिवर्तों के पास AT की अधिक मात्रा होती है।	
	E. प्राथमिकता से, वे जीत-न्यूत G गुणसूत्र बैण्ड में स्थित होते हैं।	
	निम्न विकल्पों में से कौन सा सभी सही कथतों के संयोजन को दर्शाता है?	
	1. A, B और E	
	2. B, C और D	
	3. केवल A और C	
	4. केबल C और E	
	A1 1	
	1	
	A2 2	
	2	
	A3 3	
	3	
	A4 4 :	
institut O	4	
jective Question 703081		4.0 1.00
1. 100000000000000000000000000000000000		1.00

In C. elegans, PAR proteins segregate at the cell cortex in the zygote to establish cell polarity. This is dependent on the regulation of the cortical actin cytoskeleton by RhoA. An investigator sought to directly inhibit actin polymerization to analyze the impact of this inhibition on PAR protein localization. Which one of the following chemicals would be the most suitable? 1. Taxol 2. Colchicine 3. Latrunculin 4. LY294002 सी. एलिगेन्स (C. elegans) में, PAR पोटीन कोशिका धुवीयता को स्थापित करने के लिए युग्मज में कोशिका वल्कुट पर पृथक होते हैं। यह RhoA द्वारा वल्कुटी एक्टिन कोशिकापंजर के नियमन पर निर्भर होता है। एक शोधकर्ता, PAR प्रोटीन के स्थानीकरण पर इस संदमन के प्रभाव का विश्लेषण करने के लिए, एक्टिन बहुलीकरण को प्रत्यक्ष रूप से संदमित करने का प्रयास करता है। निम्न रसायनों में कौन सा एक सबसे उपयुक्त होगा? 1. टैक्सॉल 2. कोलचीसिन 3. लैटरून्ययुलिन 4. LY294002 A1 1 1 A2 2 2 A3 3 3 1.00 Researcher plans to study protein trafficking into the endoplasmic reticulum (ER). For this purpose, they plan different experimental conditions shown below: A. The cytosol is mixed with mRNA that codes for a secreted protein, followed by western blotting with antibodies against secreted protein. B. The cytosol is mixed with mRNA that codes for a secreted protein and rough microsomes, followed by western blotting with antibodies against secreted protein. C. The cytosol is mixed with mRNA that codes for a secreted protein and rough microsomes followed by protease treatment. Subsequently, western blotting with antibodies against secreted protein is done. Consider that mRNA that codes for a secreted protein is added in abundant amount, which experimental control/s would be the best to confirm the polypeptide entry into the ER? 1. A and B only 2. B only 3. C only 4. A, B and C

Objective Question 82 703082 शोधार्थी अंतर्द्रव्यी जालिका (ER) के अंदर प्रोटीन आवागमन के अध्ययन के उद्देश्य हेतु योजना बनाते हैं। इसके लिए वे नीचे दिए गए विभिन्न प्रायोगिक स्थितियों की योजना बनाते हैं:

- A. कोशिकाद्रव को सावी पोटीन का प्रकृटन करने वाले mRNA के साथ मिलाया जाता है, तत्पश्चात सावी पोटीन के विरुद्ध प्रतिरक्षी (एन्टीवॉडी) द्वारा वेर्स्टन ब्लोटिंग।
- B. कोशिकाद्रव को सावी पोटीन का प्रकृटन करने वाले mRNA और रूक्ष (rough) सूक्ष्मकायों के साथ मिलाये जाते हैं, तत्पश्चात सावी प्रोटीन के विरूब प्रतिरक्षी दारा वेस्टर्न ब्लोटिंग।
- C. कोशिकाद्रय को सायी पोटीन का प्रकृटन करने वाले mRNA और रूक्ष सुक्ष्मकार्यों के साथ मिलाकर प्रोटिएज उपचार, तत्पश्चात सावी प्रोटीन के विरूद प्रतिरक्षी द्वारा वेस्टर्न ब्लोटिंग किया गया।

यह मानते हुए कि सावी प्रोटीन का प्रकूटन करने वाले mRNA को अत्यधिक मात्रा में मिलाया गया, कौन सा/से नियंत्रित प्रयोग पॉलीपेप्टाइड का ER के अंदर प्रवेश की पुष्टि को सर्वोत्तम ढंग से निदर्शित करेंगे।

- 1. केवल A और B
- 2. केवल B
- 3. केवल C
- 4. A. B और C

A1 1

A2 2

2

A3 3

3

A4 4

Objective Question

703083 1.00 4.0

Following statements were made about mRNA splicing:

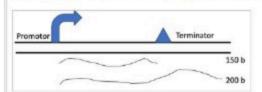
- A. Involvement of a cis-acting branchpoint site (or branchpoint sequence) present near 3' end of each exon is essential for splicing.
- B. In the first step of splicing reaction, 2'-OH of the conserved U at the branch-site acts as a nucleophile to attack the phosphoryl group of the conserved G in the 5' splice site.
- C. The newly liberated intron adapts shape of a lariat due to joining of the 5' end of the intron to the branchpoint.
- D. During the splicing process, there is no net gain in the number of chemical bonds.
- E. Prp22 (a DEAD-box helicase) is required for stripping the spliced mRNA from the spliceosome.

Which one of the following options shows combination of all correct statements?

- 1. B, C, D
- 2. C, D, E
- 3. A and E only
- 4. B and D only

mRNA समबन्धन के बारे में निम्न कथन कहे गए:

- A. समबन्धन हेतु प्रत्येक एक्सॉन के 3' सिरे के निकट उपस्थित cis प्रकार से कार्य करने वाले (cis-acting) शाखाविंदु स्थल (या शाखाविन्दु अनुक्रम) की सहभागिता आवश्यक है।
- B. समबन्धन प्रक्रिया के प्रथम चरण में, शाखाबिन्दु पर उपस्थित संरक्षित U का 2'-OH, 5' समबन्धन स्थल में संरक्षित G के फॉस्फोरिल समूह पर आक्रमण के लिए, एक केन्द्रकस्तेही के जैसा कार्य करते हैं।
- C. 5' शाखाबिन्दु के साथ एन्ट्रान के 5' सिरे के जुड़ाव के कारण नए मुक्त हुए एन्ट्रांन रस्त्री (lariat) जैसा आकार ले लेते हैं।
- D. समबन्धन की प्रक्रिया के दौरान, रासायनिक बन्धों की संख्या में कोई शुद्ध लाभ नहीं होता।
- E. समबन्धनकाय (स्प्लाइसियोसोम) से समबंधी mRNA को अलग करने हेतु Prp22 (एक DEAD-box हैलिकेज) की आवश्यकता होती है।


निम्न विकल्पों में से कौन सभी सही कथनों के संयोजन को पदर्शित करता है ?

- 1. B, C, D
- 2. C, D, E
- 3. केवल A और E
- 4. केवल B और D
- A1 1
 - 1
- A2 2
- 2
- A3 3
- 3
- A4 4
 - 4

Given below is the structure of a gene whose transcription is terminated in a Rho-independent manner. When the terminator is operational, the short transcript of 150 bases is formed and when it is not operational, a longer transcript of 200 bases is formed. A researcher generated several mutations in the terminator region and examined the transcripts obtained.

4.0

1.00

The manipulations done are:

- A. Three nucleotides of the string of 8Ts were replaced by GCC.
- B. The 8T sequence was transferred to the template strand.
- The sequences that generate the paired stem were altered to disrupt pairing.
- D. The sequences that generate the paired stem were altered to disrupt pairing, followed by introduction of compensatory mutations to restore pairing.

Choose the option that correctly predicts the potential transcript size in each of these cases.

- 1. Short transcript in A and D; long in B and C
- 2. Long transcript in A, B and D; short in C
- 3. Short transcript in B and D; long in A and C
- 4. Long transcript in A, B and C; short in D

नीचे एक जीत की संरचना दी गई है जिसका अनुलेखन का समापन Rho- मुक्त प्रकार से होता है। जब समापक क्रियाशील होता है, 150 क्षारको (bases) का छोटा अनुलेख बनता है, और जब यह क्रियाशील नहीं होता, 200 क्षारक दीर्घ का एक अनुलेख बनता है। एक शोधकर्ता, समापक क्षेत्र में कई उत्परिवर्तन उत्पन्न कर पाप्त अनुलेखों की जाँच करता है।

किए गए फेरबदल हैं:

- A. 8Ts की सूत्र के तीन न्यूक्लियोटाइडों को GCC से प्रतिस्थापित किया गया।
- B. 8T अनुक्रम, टेम्पलेट स्ट्रेंड पर स्थानांतरित किया गया।
- C. अनुक्रम जो युग्मित स्तंभ बनाता है, उसका परिवर्तन युग्मन को बाधित करने के लिए किया गया।
- D. अनुक्रम जो युग्मित स्तंभ बनाता है, उसका परिवर्तन युग्मन को बाधित करने के लिए किया गया, तत्पश्चात युग्मन को पुनर्स्थापित करने के लिए क्षतिपूरक उत्परिवर्तनों को लाया गया।

उस विकल्प को चुनिए जो इन सभी प्रकरणों में संभावित अनुलेख के आमाप को सही ढंग से अनुमानित करता है।

- 1. A और D में छोटा अनुलेख, B और C में लंबा
- 2. A, B और D में लंबा अनुलेख, C मे छोटा
- 3. B और D में छोटा अनुलेख, A और C में लंबा
- 4. A, B और C में लंबा अनुलेख, D में छोटा

Al 1

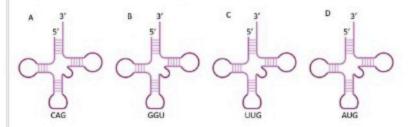
A2 2

2

A3 3

A4 4

	ctive Question	
85	703085	4.0 1.00

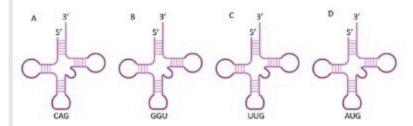

Following statements were made about initiation of translation in eukaryotes. A. The eIF2 facilitates correct recognition and binding of ribosomal subunits. B. The eIF2B activates eIF2 by replacing its GDP with GTP. C. The eIF3 binds to the 60S ribosomal subunit and inhibits its reassociation with the 40S subunit. D. eIF5 promotes association between the 60S ribosomal subunit and the 48S complex. E. The eIF6 binds to the 60S ribosomal subunit and blocks reassociation with the 40S subunit. Which one of the following options shows combination of all correct statements? 1. A. B. D 2. B, D, E 3. B, C, E 4. A, C, D सुकेन्द्रकीयों में अनुवादन आरंभन के बारे में निम्न कथन कहे गए। A. eIF2, सही अभिनान और राइबोसोमीय उपइकाईयों के बंधन की सहायता प्रदान करता है। B. eIF2B, eIF2 को इसके GDP को GTP से बदलकर सक्रिय करता है । C. eIF3, 60S राइबोसोमीय उपइकाई से वेंधता है और इसके 40S उपइकाई से पुनर्सयोजन को संदमित करता है। D. eIF5, 60S राइबोसोमीय उपइकाई और 48S की समष्टि के बीच संयोजन को वर्षित करता है। E. eIF6, 60S राइबोसोमीय उपइकाई से वेंधता है और 40S के साथ पुनर्सयोजन को अवरुद्ध करता है। निम्न विकल्पों में से कौन सभी सही कथनों के संयोजन को प्रदर्शित करता है ? 1. A, B, D 2. B, D, E 3. B, C, E 4. A, C, D A1 1 1 A2 2 2 A3 3 3 A4 4

		4.0	1.00
1			
	5 4		
	A4 4		
	3		
	A3 3		
	2		
	A2 2		
	1		
	A1 1		
	4. D और E		
	3. B और C		
	2. A और D		
	1. À और C		
	निम्न में से कौन सा विकल्प सभी सही कथनों के युग्म को प्रदर्शित करता है ?		
	E.पश्चगामी स्ट्रेंड, प्रतिकृतियन की रोलिंग सर्कल क्रियाविधि में नहीं बनता है ।		
	D. पैंक होते से पहले, A में संतित DNA कई जीवोम दीर्घ विस्तारित हो सकता है।		
	क्रियाविधि का उपयोग करता है।		
	C. ई. कोलाई (E. coli), द्वि- स्टूंंड DNA जीनोम के प्रतिकृतियन के लिए इस		
	लिए इस क्रियाविधि का उपयोग करता है ।		
	B. ई. कोलाई (E. coli) ФX174 द्वि-स्ट्रेंड वृत्तीय जीनोम के प्रतिकृतियन के		
	A. यह केवल एक प्रतिकृतियन दिशाख के साथ एक-दिशीय रूप से होता है ।		
	प्रतिकृतियन के रोलिंग सर्कल क्रियाविधि के बारे में निम्न कथन कहे गए ।		
	4. D and E		
	3. B and C		
	2. A and D		
	1. A and C		
	Which one of the following options shows the combination of all correct statements?		
	E. The lagging strand is not formed in rolling circle mechanism of replication.		
	D. In λ, the progeny DNA may range several genomes long before it is packaged.		
	C. E. coli utilizes this mechanism to replicate its double-stranded DNA genome.		
	stranded circular genome.		
	B. The E. coli ΦX174 phage uses this mechanism to replicate double-		
	A. It occurs unidirectionally, with only one replicating fork.		
	Following statements were made about rolling circle mechanism of replication.		
	Following statements were made about rolling circle machanism of		

A portion of an mRNA encoding a protein is shown below, with the start codon underlined.

5'...CCUCAAACAGACACCAUGUUGCACCUGACUCCU...3'

Which one of the following tRNAs is most likely used for translating the **second** codon in the open reading frame of the protein?



- 1. A
- 2. B
- 3. C
- 4. D

पारंभन कोडॉन को रेखांकित करते हुए एक पोटीन का कूटन करने वाले mRNA के एक भाग को नीचे दर्शाया गया है ।

5'...CCUCAAACAGACACCAUGUUGCACCUGACUCCU...3'

तिम्त में से कौत सा t-RNA, प्रोटीन के ओपन रीडिंग फ्रेम में दूसरे कोडॉन के अनुवादन में सर्वसंभावित रूप से उपयोग में लाया जाएगा ?

- 1. A
- 2. B
- 3. C
- 4. D
- A1 1
 - 1
- A2 2
- 2
- A3 3
- 3
- A4 4
- **

Objective Question

The table below represents some protein modifications in Column X and their functions in Column Y.

	Column X		Column Y
Protein modification			Function
a	Palmitoylation	İ.	Protein degradation
b.	polySUMOylation	II.	Membrane anchoring
C.	Glycosylphosphatidylinositol	iii.	Lysosomal targeting
d.	Mannose-6-phosphate	iv.	Protein folding

Which one of the following options represents all correct matches between Column X and Column Y?

- 1. a-ii; b-i; c-iv; d-iii
- 2. a-i; b-iv; c-ii; d-iii
- 3. a-ii; b-i; c-ii; d-iii
- 4. a-iv; b-iv; c-ii; d-i

नीचे सारिणी के स्तंभ X में कुछ प्रोटीन रूपातंरणों तथा स्तंभ Y में उनके कार्यों को दर्शाया गया है।

	स्तंभ X		स्तंभ Y		
प्रोटीन रूपांतरण			कार्य		
a.	पॉमिटॉयलेशन	i.	प्रोटीन अपघटन		
b.	पॉली-सुमॉयलेशन	ij.	झिल्ली संलग्नन		
C.	ग्लाइकोसिलफॉस्फोटाइडिलइनोसिटोल	iii.	लाइसोसोमीय टारगेटिंग		
d.	मैनोज-६-फॉस्फेट	iv.	प्रोटीन यलन		

तिम्त में से कौत सा विकल्प स्तंभ X तथा स्तंभ Y के बीच सभी सही मिलातों को प्रदर्शित करता है?

- 1. a-ii; b-i; c-iv; d-iii
- 2. a-i; b-iv; c-ii; d-iii
- 3. a-II; b-I; c-II; d-III
- 4. a-iv; b-iv; c-ii; d-i

Al 1

1

A2 2

2

A3 3

3

A4 4

-

Objective Question

89 703089

4.0 1.00

Bacteria employ various mechanisms to invade or enter host cells, which are either phagocytic or non-phagocytic in nature. Given below are some of the mechanisms which are generally used for carrying out this process.

- A. Some bacteria express a protein called invasin that is recognized by host-cell β1 integrins.
- B. Actin polymerization along with assembly of clathrin coat results in the internalization of bacteria by zipper mechanism.
- C. Some bacteria, including Salmonella enterica, use trigger mechanism to inject a set of effector molecules in the cytosol through type III secretion system.
- D. Some bacteria attach to host cell surface receptors inducing local elevation of Ca2+ in cell cytosol, leading to the fusion of lysosomes with bacteria containing plasma membrane vesicles.

Which one of the following represents the combination of correct mechanisms for invading non-phagocytic cells?

- 1. A. B and C
- 2. B, C and D
- 3. A, B and D
- 4. A, C and D

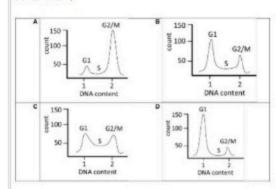
जीवाणु, पोषी-कोशिका में आक्रमण अथवा प्रवेश करते के लिए कई क्रियाविधियों को प्रयोग में लाता है, जो कि या तो भक्षकाणुक या अभक्षकाणुक प्रकृति के होते हैं। निम्निलिखित कुछ क्रियाविधियां दी गई जो इस प्रक्रिया को चलाने के लिए सामान्यतः उपयोग की जाती हैं।

- Α. कुछ जीवाणु इनवंसिन नामक प्रोटीन को प्रकट करते हैं, जो पोषी-कोशिका के β1 इन्टेंबिन द्वारा पहचानी जाती है।
- घिक्टन बहुलीकरण, क्लैशिन आवरण के एकत्रण के साथ जिपर कियाविधि द्वारा जीवाणु के समावेशन का कारण बनता है।
- C. कुछ जीवाणु जिसमे साल्मोनेला ऐनटिरिका (Salmonella enterica) भी सम्मिलित हैं, टाइप- III सावण प्रणाली द्वारा कोशिकादव में प्रभावी अणुओं के समूह के निक्षेपण के लिए ट्रिगर क्रियाविधि का उपयोग करते हैं।
- D. कुछ जीवाणु, पोषी कोशिका के सतही संवेदकों से आबब होते हैं और कोशिका के कोशिकाद्रव में Ca²⁺ के स्थानीय उन्नयन को प्रेरित करते हैं, जो कि लाइसोसोमों का जीवाणु-युक्त प्लाज्मा-झिल्ली की पुटिकाओं से संलयन का कारण बनता है।

तिम्त में से कौत, अभक्षकाणुक कोशिकाओं में आक्रमण की सही क्रियाविधि के संयोजन को प्रदर्शित करता है ?

- 2. B, C और D
- 3. A, B और D
- 4. A. C और D
- A1 1
 - 1
- A2 2
 - 2
- A3 3

	3		
	A4 4		
	4		
ojective Question			31
ojective Question 703090	The cAMP-PKA-CREB pathway regulates many important biological processes, from hormone synthesis to inducing long-term memory in the brain. The following statements describe the effects of mutations in the components of the pathway on gene transcription by CREB. A. Loss of function mutation in a cAMP binding site of the PKA regulatory subunit leads to the inactivation of gene expression. B. Activating mutation in the GTP-binding domain of the a subunit of Gs leads to the activation of gene expression. C. Inactivating mutation that prevents the regulatory subunit of PKA to bind the catalytic subunit leads to the activation of gene expression. D. Inactivating mutation in the PKA phosphorylation site of CREB leads to the activation of gene expression. Which one of the following statements is INCORRECT? 1. Only A 2. A and D 3. Only D 4. B and D cAMP-PKA-CREB uu, हामील संश्लेषण से लेकर मिस्तिक में टीघे-कालिक स्मृति पैरित करते तक कई महत्वपूर्ण जीविक पिक्रवाओं को वितियमित करता है। तम्मित पैरित करते तक कई महत्वपूर्ण जीविक पिक्रवाओं को वितियमित करता है। A. PKA के तियामक उपइकाई के एक cAMP बन्ध स्था में क्रियाशीलता के ह्यास करते वाले उत्परिवर्तन, जीत अमिय्यक्ति के लिफिक्यण का कारण बनता है। B. Gs की एक उपइकाई के GTP-बन्ध पक्षेत्र में सिक्रयक उत्परिवर्तन के कारण जीत अमिय्यक्ति का सिक्रयण होता है। C. संदमक उत्परिवर्तन, जो कि PKA की तियामक उपइकाई को उत्परण उपइकाई से बँधने से रोकता है, के कारण जीत अमिय्यक्ति का सिक्रयण होता है। D. CREB के PKA फास्फोरिनीकरण स्थल में संदमक उत्परिवर्तन के कारण जीत अमिय्यक्ति का सिक्रयण होता है। तम्ब में से कीत सा कथन गनता है? 1. केवल A 2. A और D 3. केवल D	4.0	1.00
	4. B और D		
	Al ,		
	1 1		
	A2 2		
	2		
	A3 3		
	3		


	A4 4		
	4		
jective Quest	on .		
703091	Extracellular matrix comprises of various proteins and polysaccharides that assemble into an organized meshwork. This associates with the cells that produce them. Given below are a few statements regarding different components of the matrix.	4.0	1.00
	 A. Collagen is the major protein of the extracellular matrix and is a long, and triple-stranded helical structure. 		
	B. Hyaluronan which is produced in large quantities during wound healing is a type of glycosaminoglycan (GAG) that contains sulfated sugar and is covalently linked to the core protein.		
	C. Syndecans are plasma membrane proteoglycans that interact with the actin cytoskeleton and signaling molecules of the cell cortex.		
	D. Decorin is a small proteoglycan secreted by fibroblasts and contains 1- 10 GAG chains.		
	Which one of the following options represents INCORRECT statement/s?		
	1. C and D only		
	2. B, C and D		
	3. A and B		
	4. B only		
	वाह्यकोशिकीय आधात्री (मैट्रिक्स) विभिन्न प्रोटीनों और पॉलीसैकेराइडों से बना हुआ		
	होता है, जो कि सुनियोजित ढंग से एकत्रित होकर एक जातिका का तिर्माण करते		
	हैं। यह उनको उत्पन्न करने वाले कोशिकाओं से संबंधित होते हैं। नीचे आधात्री के		
	विभिन्त घटकों के बारे में कुछ कथन दिए गए हैं।		
	A. कोलेजन वाह्यकोशिकीय आधात्री की मुख्य प्रोटीन है, जो एक लंबी		
	त्रिरज्जुक कुंडलाकार संरचना है।		
	B. हाइल्युरोतन जो कि घाव भरने के दौरात अत्यधिक मात्रा में उत्पादित		
	होती है, ग्लाइकोसेमिनोग्लाइकन (GAG) का एक प्रकार है, जिसमे सल्फेट युक्त		
	शर्करा होती है और वह सहसंयोजी रूप से मुख्य (कोर) प्रोटीत से जुड़ी होती है ।		
	C. सिंडीकेन्स प्रद्रव्य झिल्ली प्रोटियोग्लाइकन्स हैं, जो कि एक्टिन		
	कोशिकापंजर तथा कोशिका वल्कुट (कोंर्टक्स) के संकेतन अणुओं से अन्योन्यक्रिया करता है		
	D. डेकोरिन तन्तुकोरक (फाइब्रोब्लास्ट) द्वारा स्नावित एक छोटा		
	प्रोटियोग्लाइकत है, तथा इसमे 1-10 GAG की शृखंलाए होती है।		
	निम्न में से कौन सा विकल्प गलत कथन∕कथनों को दर्शाता है ?		
	1. केवल C और D		
	2. B, C और D		
	3. A और B		
	4. केवल B		
	A1 1		
	1		
	A2 2		
	2		

	A3 3		Ï
	3		
	A4 4		
biective Ove	4 stion		
Objective Que 2 703092	Synchronous cultures of MCF7 breast cancer cells were grown and treated with the following: (i) buffer (plate was named MCF7), (ii) an inhibitor of Cyclin D (plate was named MCF7. (iii) siRNA designed against Cyclin B1 (plate was named MCF7. Following this, the cells were stained and sorted using flow cytometry. The relative amount of DNA in each of the three phases of the cell cycle (31, 5, 62/M in arbitrary units) were plotted against the number of cells, as shown below. Which one of the following options correctly represents all the cell cycle states of MCF7. 1 and MCF7.2? 1. MCF7-C; MCF7.1-D; MCF7.2-A 2. MCF7-C; MCF7.1-D; MCF7.2-A 4. MCF7-B; MCF7.1-A; MCF7.2-D	4.0	1.00

MCF7 स्तन कैंसर कोशिकाओं के तुल्यकालिक संवर्धनों को वर्षित किया गया तथा निम्न के द्वारा उपचारित किया गया:

(i) बफर (प्लेट को MCF7 नामांकित किया गया), (ii) Cyclin D का संदमक (प्लेट को MCF7.1 नामांकित किया गया), और (iii) Cyclin B1 के विरूद प्रतिरूपित किए गए siRNA (प्लेट को MCF7.2 नामांकित किया गया)।

इसके पश्चात, कोशिकाओं को रंजित कर प्रवाह कोशिकामापी द्वारा छांटा गया। कोशिका चक्र के प्रत्येक तीन चरणों में (G1, S, G2/M याद्वच्छिक इकाईयों में), DNA की सापेक्षिक मात्रा को कोशिका संख्या के विरूद, निम्नानुसार आलेखित किया गया।

निम्न में से कौन सा विकल्प MCF7, MCF7.1 तथा MCF7.2 के कोशिका चक्र के सभी अवस्थाओं को प्रदर्शित करता है ?

1. MCF7-C; MCF7.1-D; MCF7.2-A

2. MCF7-C; MCF7.1-A; MCF7.2-D

3. MCF7-B; MCF7.1-D; MCF7.2-A

4. MCF7-B; MCF7.1-A; MCF7.2-D

A1 1

1

A2 .

2

A3 3

3

A4 4

Objective Question

93 703093 4.0 1.00

Apoptosis refers to programmed cell death that is triggered by specialized intracellular proteases called caspases. The intrinsic pathway of apoptosis

- A. depends on the activation of Fas domain by the Fas ligand, which activates the DISC.
- B. is regulated by the Bcl2 family of proteins.
- C. consists of a key regulatory protein Apaf1 which is a water-soluble component of the electron transport chain.
- D. recruits procaspase 9 into the apoptosome, and once activated, caspase 9 cleaves and activates downstream executioner caspases.

Which of the following combinations represents all correct statements?

- 1. A, B and D
- 2. B, C and D
- 3. C and D only
- 4. B and D only

ऐपेप्टोसिस, योजनाबद्ध कोशिका मृत्यु को संदर्भित करता है जो कि कैस्पेजेज कहलाने वाले विशिष्ट अन्तःकोशिकीय प्रोटियेजों से सक्रियकृत होते हैं। ऐपोप्टोसिस का मूलभूत पथ:

- A. Fas संलग्नी द्वारा Fas प्रक्षेत्र के सिक्रयण पर निर्भर करता है, जो कि DISC को सिक्रय करता है।
- B. Bcl2 कुटुम्ब के प्रोटिनों द्वारा विनियमित होता है।
- C. एक प्रमुख नियामक प्रोटीन Apai1 का बना होता है, जो कि इलेक्ट्रान परिवहन श्रृंखला का जल विलेय घटक है।
- D. एपोटोसोम में प्रोकॅम्पेज 9 को स्थापित (recruit) करता है, और एक बार सिक्रय होते पर कैस्पेज 9 अनुप्रवाह निष्पादक कैस्पेजों को विदिलत कर सिक्रय करता है।

निम्न में से कौन सा संयोजन सभी सही कथनों को दर्शाना है ?

- 1. A. B 新 D
- 2. B, C और D
- 3. केवल C और D
- 4. केवल B और D

A1 1

1

A2 2

2

A3 3

3

A4 4

4

In an experiment using nude mice, the population is divided into two groups, A and B. Group A mice are injected with T cells from normal mice and Group B mice are left untreated. Both the groups are then immunized with LPS. Which one of the following statements regarding antibody production in groups A and B is most likely to be true?

- Both groups of mice will have very similar levels of antibody against LPS as it is a thymus- independent antigen.
- No immune response will be generated in both groups of mice as they lack thymus.
- Only Group A mice will have antibodies as T-independent antigens are dependent on T-cell activation.
- Only Group B mice will have antibodies, because in group A mice, the presence of T cells will interfere with the production of antibodies against T-independent antigen.

विरोम मूपक (nude mice) का उपयोग करते हुए एक प्रयोग में आवादी को दो समूहों को A तथा B में बांटा गया। समूह A के मूपकों में सामान्य मूपक से पाप्त T-कोशिकाओं को अन्तःक्षिप्त किया, और समूह B के मूपकों में अन्तःक्षिप्त नहीं किया गया। फिर दोनों समूहों को LPS से प्रतिरक्षित किया गया। समूहों A और B में प्रतिरक्षी उत्पादन के बारे में निम्न में से कौन सा कथन सर्वसंभावित है?

- दोनों समूहों के मूषकों में LPS के विरूद प्रतिरक्षी की एक समान मात्रा होगी, क्योंकि यह एक थाइमस स्वतंत्र प्रतिजन है।
- दोनों समूहों के मूषकों में कोई प्रतिरक्षा अनुक्रिया नहीं होगी क्योंकि वे थाइमस विहीन हैं ।
- केवल समूह A के मूषकों में प्रतिरक्षी होगी क्योंकि T-स्वतंत्र प्रतिजन, T-कोशिका सक्रियण पर निर्भर करते हैं।
- 4. केवल समूह B के मूषकों में प्रतिरक्षी होगी, क्योंकि समूह A के मूषकों में T कोशिकाओं की उपस्थिति T स्वतंत्र प्रतिज्ञन के विरुद्ध प्रतिरक्षियों के उत्पादन में हस्तक्षेप करेगी ।

A1 1

1

A2 2

2

A3 3

3

A4

100

Objective Question

95 703095

Several extracellular mechanisms lead to intracellular changes to regulate stem cell behavior during development. Based on this, which one of the following statements is **NOT** true?

- Structural and adhesion factors in the extracellular matrix support cellular architecture of the stem cell niche.
- Different patterns of chromatin accessibility influence gene expression related to stem cell behavior.
- Partitioning of cytoplasmic determinants distributes factors determining cell fate evenly into daughter cells during asymmetric division.
- Secreted proteins from surrounding cells by autocrine, paracrine or juxtacrine mechanisms often maintain stem cells in an uncommitted state.

4.0

1.00

विकास के दौरान, वाद्यकोशिकीय क्रियाविधियों द्वारा प्रेरित अन्तःकोशिकीय परिवर्तन के कारण मूल कोशिकाओं के व्यवहार का नियंत्रण होता हैं। इस आधार पर, निम्न में से कौन सा कथन सत्य नहीं है?

- वाद्धकोशिकीय आधात्री में संरचनात्मक और आसंजन कारक, मूलकोशिका निकेत (niche) के कोशिकीय संरचना को सहारा देते हैं।
- क्रोमैटिन अभिगम्यता का विभिन्न स्वरूप मूल कोशिका के व्यवहार से संबंधित जीन अभिव्यक्ति को प्रभावित करता हैं।
- असममित विभाजन के दौरान संतित कोशिकाओं में कोशिकाद्रव्यी निर्धारक का विभाजन कोशिका नियति निर्धारकों के समान वितरण को सुनिश्चित करता है।
- 4. परिवामी कोशिकाओं से, औटोक्राइन, पैराक्राइन अथवा जरूरटाक्राइन क्रियाविधियों द्वारा सावित प्रोटीन प्रायः मूल कोशिकाओं को अप्रतिबद्ध अवस्था में बनाए रखते हैं ।

A1 1

1

A2 2

2

A3 3

3

A4 4

...

Objective Question

96 703096

By expressing the EGF-like ligand LIN-3, the *C. elegans* anchor cell (AC) directly triggers vulval development. LIN-3 acts at a distance and has a graded action. The levels of LIN-3 can be controlled by using various genetic techniques.

S	Strain/condition (I)		VPC cell fate (II)
A.	Wild type worms grown on empty vector RNAi	I.	AC 2° 1° 1° 1° 2°
B.	lin-3 mutant with a stop codon in exon 3	II.	3° 3° 2° 1° 2° 3°
C.	Wild type worms grown on <i>lin</i> -3 RNAi	III.	3° 3° 3° 3° 3° 3°
D.	Wild type worms expressing a multi- copy extrachromosomal array of <i>lin-3</i> gene	IV.	3° 3° 3° 1° 3° 3°

Which one of the following options is a correct match between column I and column II?

- 1. a-ii, b-iii, c-iv, d-i
- 2. a-ii, b-iv, c-i, d-iii
- 3. a-iv, b-i, c-ii, d-iii
- 4. a-iii, b-iv, c-i, d-ii

4.0 1.00

EGF के जैसे संलग्नी LIN-3 को अभिय्यक्त करके सी. ऐलिगेन्स (C. elegans) की संलागी कोशिका (anchor cell) भगीय विकास को प्रत्यक्ष रूप से सक्रिय करती है। LIN-3 कुछ दूरी पर कार्य करता है, और इसकी प्रक्रिया श्रेणीकृत होती है। विभिन्न आनुवंशिक तकनीकों द्वारा LIN-3 के स्तर को नियंत्रित किया जा सकता है।

	नस्ल / दशा (I)		VPC कोशिका नियति (II)		
a.	वन्य प्रकार कृमि, रिक्त RNAi वाहक में वर्षित हुए	i.	P 2" 1" 1" 2"		
b.	lin-3 उत्परियर्ती, exon 3 में समापन कोडॉन (stop codon) के साथ	ii.	3° 3° 2° 3° 2° 3°		
C.	lin-3 RNAi में यर्पित यत्य प्रकार कृमि	III.	3° 3° 3° 3° 3° 3°		
d.	lin-3 जीन के गुणस्त्रीय अतिरिक्त श्रृंखला समूह (extrachromosomal array) की बहुपति को अभिय्यक करने पाले यत्य प्रकार कृमि	iv.	3° 3° 3° 3° 3° 3°		

निस्त में से कौन सा विकल्प स्तंभ । और स्तंभ ॥ के बीच का सही मिलान है ?

- 1. a-ii, b-iii, c-iv, d-i
- 2. a-ii, b-iv, c-i, d-iii
- 3. a-lv, b-l, c-ll, d-lll
- 4. a-III, b-Iv, c-I, d-II

A1 1

1

A2 2

2

A3 3

3 A4 4

4

Objective Question

1.00 703097

		Given below are statements about development in different model organisms.		
		Xenopus egg has yolk and hence undergoes meroblastic cleavage.		
		B. Embryonically transcribed beta-catenin in the blastomeres of sea urchin embryos regulates the autonomous specification of micromeres.		
		C. The sodium pump activity in the trophoblast helps in the formation of blastocoel of a mammalian blastocyst.		
		 D. Prevention of tubal pregnancy is one of the major functions of zona pellucida in humans. 		
		Which combination of the statements is true?		
		1. A and B		
		2. A and C		
		3. B and D		
		4. C and D		
		विभिन्न जीव प्रतिरूपों (model organisms) के संबंध में निम्न कुछ कथन दिए		
		गए हैं।		
		A. जितोपस के अंडे में पीत होता है, इसलिए इतमे अंशभंजी विदलन होता है ।		
		B. जलसाही (समुद्री अर्चित) के भूण के कोरकखंडों में भूणीय तौर पर		
		अनुलेखित बीटा-कैटेनिन, लघुखंड के स्वायत्त विनिर्देशन को नियंत्रित करता है ।		
		C. ट्रोफोब्लास्ट में सोडियम पंप गतिविधि स्तती ब्लस्टोसिस्ट के कोरक गुहा		
		को निर्मित करने में सहायक होती है।		
		D. मानव में पारदर्शी अण्डावरण (जोना पेल्यूसिडा) का एक प्रमुख कार्य डिम्बवाहिनी संगर्भता (tubal pregnancy) से बचाव है।		
		कथतों का कौत सा युग्म सही है ?		
		1. A		
		2. A और C		
		3. B और D		
		4. C और D		
		A1 1		
		1		
		A2 2		
		2		
		A3 3		
		3		
		A4 4		
		4		
Object	ive Question			
98	703098		4.0	1.00
ļ, I				

The following statements pertain to limb development in chick. Each statement describes an experiment and the expected outcome.

- A. Targeted loss of retinoic acid synthesis in the forelimb causes a reduction of Tbx4 expression and the failure to form forelimbs.
- B. When Fgf10 secreting beads are placed at a somite level that induced limb bud expressing Tbx5 in the anterior and Tbx4 in the posterior part, a chimeric limb can be formed.
- C. Constitutive activation of FGF receptors results in the loss of forelimb field, demonstrating that expression of Fgf8 functions to inhibit forelimb development.

Which one of the following option(s) is/are correct?

- 1. A only
- 2. B only
- 3. A and B
- 4. B and C

तिम्त कथत चूजों में पाद विकास से संबंधित है। प्रत्येक कथत एक प्रयोग और उसके संभावित परिणाम का वर्णन करता है।

- A. अग्रपाद में रेटिनोइक अम्ल संश्लेषण की लक्षित क्षित के कारण Tbx4
 के अभिय्यक्ति में कमी तथा अग्रपाद बनने में असफलता होती है ।
- B. जब Fgf10 स्रायित करने वाले मिनकाओ (beads) को उस कायखण्ड स्तर पर रखा गया जिसके पाद मुकुल के अग्रभाग में Tbx5 तथा पश्च भाग में Tbx4 कि अभिव्यक्ति होती है, तब एक विचित्रोतकी (chimeric) पाद बन सकता है।
- C. FGF बाहियों के सर्वक्षण (constitutive) उत्पेरण के कारण अग्रपाद प्रक्षेत्र का लोपन होता है, जो कि Fgf8 की अभिय्यक्ति द्वारा अग्रपाद के विकास में बाधा पहचाने को निदर्शित करता है।

निस्त में से कौन सा/से विकल्प सही है/हैं?

- 1. केवल A
- 2. केवल B
- 3. A और B
- 4. B और C

A1 1

1

A2 2

2

A3 3

3

A4 4

4

Objective Question

Mechanism of primary sex determination is best known in *Drosophila* and mammals. Given below are statements in regard of sex determination in these two model systems.

- A. In Drosophila, if sry gene product is present, it may block betacatenin signaling and along with SF1, activate the sox9 gene.
- B. In mammals, an alternate splicing of Sxl transcript that removes a stop codon and allows formation of a functional protein, is responsible for initiating the female sex determination.
- C. A trans-splicing event in Tra transcript results in formation of functional Tra protein in *Drosophila*.
- D. XO individuals in *Drosophila* are males while, XXY individuals are females.

Which of the above statements are correct?

- 1. A, B and C
- 2. D only
- 3. C and D
- 4. B only

लिंग निर्धारण की प्रारम्भिक क्रियाविधि ड्रोसोफिला और स्तनधारियों में उत्तम प्रकार से जात है। इन दो प्रतिरूप जीवों के बारे में नीचे कुछ कथन दिए गए हैं।

- A. ड्रोसोफिला में यदि sry जीन उत्पाद उपस्थित होता है, यह बीटा-कैटेनिन संकेतन को बाधित कर सकता है, और SF1 के साथ sox9 जीन को सक्रिय करता है।
- B. स्तनधारियों में, SxI अनुलेख में एक विकल्पी समबंधन जो कि समापक कोडॉन को हटाकर एक क्रियाशील प्रोटीन निर्मित करता है, मादा लिंग निर्धारण के आरंभन के लिए उत्तरदायी है ।
- C. Tra अनुलेख में एक ट्रांस-समबंधन की प्रक्रिया ड्रोसोफिला में क्रियाशील Tra प्रोटीन बनाने का कारक है।
- D. ड्रोसोफिला में XO व्यष्टियां तर होती हैं जब कि XXY व्यष्टियां मादा होती है ।

उपरोक्त में से कौत से कथत सही हैं ?

- 1. A. B और C
- 2. केवल D
- 3. C और D
- 4. केवल B

A1 1

1

A2

2

A3 3

3

A4 4

4

The following statements describe the developmental processes during different modes of reproduction in angiosperms: A. In double fertilization, one sperm fuses with the egg and other with the central cell to form the zygote and endosperm, respectively. B. In sporophytic apomixis, a diploid cell gives rise to the next generation thereby maintaining the maternal genotype. C. In gametophytic apomixis, a reduced egg cell forms apomictic embryo through parthenogenesis. D. In pseudogamy, the functional endosperm is formed without fertilization. Which one of the following represents the combinations of CORRECT statements? 1. A and B 2. B and C 3. B and D 4. C and D निस्त कथन आवृतवीजियों में जनन के विभिन्त प्रकारों की विकासीय प्रक्रियाओं का वर्णन करते हैं: A. द्विनिषेचन में, एक शुक्राणु अण्ड से, तथा दूसरा केन्द्रीय कोशिका से, क्रमशः युग्मज तथा भूणपोष बताते के लिए, संयोजित होता है । B. बीजाणुद्धिदीय असंगजनन में, एक द्विगुणित कोशिका नई पीढ़ी कि उत्पत्ति करती है जिससे मातृ जीनप्ररूप बना रहता है । C. युग्मोद्भिदीय असंगजनन में, अनिषेकजनन द्वारा एक लघ्कृत अण्डकोशिका असंगजनिक भूण बनाती है। D. आभासी युग्मन में, तिषेचन के बिना क्रियाशील भूणपोष बनता है। तिम्त में से कौत सही कथतों के युग्म को दर्शाता है ? 1. A और B 2. B 新 C 3. B और D A1 1 A2 2

Objective Question

A3 3

A4 4

4

Given below are certain statements regarding the light absorption by chlorophyll pigment molecule in a green leaf.

- A. The absorption of a photon by a pigment molecule converts it from its lower state to an excited state.
- B. Internal conversions or relaxations of pigments convert higher excited states to the lowest excited state, with a concomitant loss of energy as heat.
- C. The light reemitted from the lowest excited state of chlorophyll molecule is fluorescence.
- D. Red light absorption by chlorophyll molecule results into higher excitation state relative to the blue light absorption.

Which one of the following combinations is correct?

- 1. A, B and C
- 2, A, B and D
- 3. B, C and D
- 4. A. C and D

हरी पत्ती के पर्णहरित वर्णक अणु द्वारा प्रकाश के अवशोषण के बारे में निम्न कुछ कथन दिए गए हैं।

- वर्णक अणु द्वारा फोटॉन का अवशोषण, इसके निम्न अवस्था से एक उत्तेजित अवस्था में परिवर्तित करता है ।
- B. वर्णकों का आंतरिक परिवर्तन अथवा शिथिलन, उसे उच्च उत्तेजित अवस्था से निम्न उत्तेजित अवस्था में ऊर्जा का ताप के रूप में संलग्न क्षिति के साथ परिवर्तित करता है.
- C. पर्णहरित अणुओं के निम्न उत्तेजित अवस्था से पुनः उत्सर्जित प्रकाश, प्रतिदीसि (fluorescence) होता है ।
- D. पर्णहरित अणु द्वारा लाल प्रकाश के अवशोषण, नीले प्रकाश के अवशोषण की तुलना में उच्च उत्तेजित अवस्था प्राप्त कराता है ।

तिस्त में से कौत से संयोजन सही है ?

- 2. A. B 新 D
- 3. B, C और D
- 4. A. C 新t D
- Al 1
 - 1
- A2 2
 - 2
- A3 3
- 3
- A4
- .

Photorespiration or C2 cycle takes place in three distinct organelles in the plant cells. Following are certain statements related to the C2 cycle.

- Reduced ferredoxin and ATP are required for photorespiration and assimilation of resulting NH₃.
- B. Photosynthetic electron transport provides energy rich ATP and NAPDH for photorespiration.
- C. Glutamate is translocated from chloroplast to peroxisome, while α-ketoglutarate is translocated from peroxisome to chloroplast.
- D. The action of enzyme serine hydroxymethyl transferase takes place in peroxlsome.

Which one of the following combinations has all correct statements?

- 1. A and B
- 2. A and C
- 3. B and C
- 4. B and D

प्रकाशीय श्वसन अथवा C2 चक्र पादप कोशिकाओं के तीन सुनिश्चित कोशिकांग में होता है। नीचे C2 आवर्तन (cycle) के बारे में कुछ कथन दिए गए हैं.

- A. अपघटित फेरीडॉक्सिन और ATP की आवश्यकता प्रकाशीय श्वसन और परिणामी NH₃ के समावेशन के लिए होती है ।
- B. प्रकाश संश्लेषित इलेक्ट्रान परिवहन, प्रकाशीय श्वसन के लिए उच्च ऊर्जा वाले ATP और NAPDH प्रदान करता है।
- D. एन्जाइम सेरीत हाइड्रोक्सीमिथाइल ट्रान्सफरेज की क्रिया परऑक्सीसोम में होती है ।

तिम्त में से किस युग्म में सभी सही कथत हैं ?

- 1. A और B
- 2. A 新 C
- 3. B और C
- 4. B और D

A1 1

1

A2 .

2

A3 3

3

A4 4

4

Objective Question

Stomata detached from the epidermis of common dayflower (Commelina communis) were treated with saturating photon fluxes of red light. After a duration of 2 hours, the same stomata, under the background of red light were also illuminated with blue light. Which one of the following statements regarding opening of stomatal apertures is true?

- The red light illumination will saturate stomatal opening and blue light illumination will have no effect on it.
- The red light illumination will not result in opening of stomata and they will open only upon perceiving blue light.
- The blue light illumination will increase the level of stomata opening above the saturation level of stomatal opening by red light illumination.
- The blue light illumination will result in closing of the stomata opened due to red light illumination.

सामान्य दिवा पुष्प (काँमिलिना काँम्यूनि) के बाह्यत्वचा (epidermis) से पृथक किए गए रन्धों को संतृप्त लाल प्रकाश के फोटाँन अभिवाहों से उपचारित किया गया। दो घंटे के समयान्तराल के बाद, उन्हीं लाल पृष्ठभूमि में रखे रन्धों को नीले प्रकाश दारा भी प्रकाशित किया गया।

तिम्तिलिखित में से कौत सा कथत रन्धीय द्वार के खुलते के बारे में सही है?

- लाल प्रकाश प्रदीप्ति, रन्ध्र खुलते को संतृप्त करेगा, तथा तीले प्रकाश की प्रदीप्ति का इस पर कोई प्रभाव नहीं पडेगा।
- लाल प्रकाश प्रदीप्ति के कारण रन्ध नहीं खुलेंगे और वे केवल नीले प्रकाश की उपस्थिति में ही खुलेंगें।
- नीले प्रकाश की प्रदीसि, रन्धों के खुलने के स्तर को लाल प्रकाश की प्रदीसि द्वारा खुलने के स्तर की संतृप्त अवस्था से ऊपर बढ़ा देगी।
- लाल प्रकाश प्रदीसि के कारण खुले हुए रन्ध, तीले प्रकाश की प्रदीसि के कारण बंद हो जाएंगे ।

Al 1

1

A2 2

2

A3 3

3

A4 4

4

Objective Question
104 703104 4.0 1.00

Apoplast phloem loading is determined by the cellular location and transport function of the membrane-bound proteins. Following are certain statements regarding these proteins.

- A. SWEETs are the sugar transporter proteins and are capable of transporting only sucrose and not glucose.
- B. Double mutants of Arabidopsis SWEET11 and SWEET12 results in carbohydrate accumulation in the source leaves and slower export of the photoassimilates.
- C. H*-symport mechanism loads sucrose or polyols into Sieve Element (SE)/Companion Cell (CC) complexes.
- D. Several clades of sucrose/H⁺ symporters (SUTs or SUCs) are localized to plasma membranes of minor vein SE/CCs and participate in apoplastic loading.

Which one of the following combinations is correct?

- 1. A. B and C
- 2. A, B and D
- 3. B, C and D
- 4. A, C and D

अपलवक (apoplast) पोषवाह का भारण, झिल्ली बन्ध प्रोटीनों के कोशिकीय अवस्थिति तथा परिवहन कार्य द्वारा निर्धारित होती है। इन प्रोटीनों के बारे में कुछ कथन निम्नलिखित हैं।

- A. SWEETs शर्करा परिवाहक पोटीन हैं, तथा वे केवल सुक्रोज का, न कि ब्लूकोज का परिवहन करने में सक्षम हैं।
- B. ऐरेबिडोप्सिस के SWEET11 और SWEET12 द्वि-उत्परिवर्त के कारण, स्रोत पणों में कार्बोहाइड्रेट का संचयन तथा प्रकाश समावेशियों के मंदित निर्यात होता है ।
- C. H⁺-सहगम क्रियाविधि, सुक्रोज अथवा पॉलीओल्स का चालिका (Sleve Element, SE)/सखी कोशिका (Companion Cell, CC) सिन्मिश्रों में उद्भारण करता है।
- D. जीवद्रव्य कला के स्क्षम शिरा के SE/CCs में सुक्रोज/H¹ सहगमक (SUTs अथवा SUCs) के कई वंशशाखाय स्थानगत होते हैं, और वें अपलवकीय भारण में प्रतिभाग करते हैं ।

निम्न में से कौन सा संयोजन सही है ?

- 2. A. B 新 D
- 3. B, C और D

A1 1

1

A2 2

2

A3 3

3

		A4 4		
		4		
Objec	tive Question			
Object 105	tive Question 703105	A researcher had inoculated the bottom leaves of a wild-type tobacco plant with tobacco ringspot virus (TRSV) and made the following statements regarding the disease after 23 days post-inoculation. A. Strong ringspot symptoms develop on the lower leaves. B. The ringspot symptoms are higher on the upper leaves. C. The top leaves have no viral symptoms D. The top leaves are immune to secondary infection by the same virus. Choose the option with all correct statements: 1. A, C and D 2. B and D only 3. A and B only	4.0	1.00
		4. C and D only		
		एक शोधकर्ता ते एक वन्य प्रकार के तम्बाकू के पाँधे की तलीय पतियाँ को तम्बाकू बलयचित्ती विषाणु (tobacco ringspot virus, TRSV) सें संरोपित किया और संरोपण के 23 दिनों बाद रोग के बारे में निम्त कथन दिए -		
		A. तिचली पत्तियों में वलयचित्ती लक्षण प्रवल मात्रा में उत्पन्त हुए ।		
		B. वलयचित्ती लक्षण ऊपरी पतियों में ज्यादा हैं।		
		C. शिखर की पतियों में विषाणु के कोई लक्षण नहीं है।		
		D. शिखर की पतियां उसी विषाणु के द्वितीयक संक्रमण से प्रतिरक्षित है। सभी सही कथतों वाले विकल्प का चयत कीजिए :		
		1. A, C और D		
		2. केबल B और D		
		3. केवल A और B		
		4. केवल C और D		
		A1 1 :		
		1 A2 2		
		32 2		
		2		
		A3 3 :		
		3		
		A4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
Objec	tive Question			
	703106		4.0	1.00

Given below are the list of plant hormones (Column X) and their biosynthesis precursors (Column Y).

	Column X	Column Y				
A.	Auxins	i.	Geranylgeranyl diphosphate			
В.	Cytokinins	II.	Adenosine moiety			
C.	Ethylene	iii.	Tryptophan			
D.	Gibberellins	iv.	1-aminocyclopropane 1-carboxylic acid			

Which one of the following options represents the correct match between column X and Y?

- 1. A i; B ii; C iii; D iv
- 2. A iii; B i; C iv; D ii
- 3. A III; B II; C IV; D I
- 4. A IV; B III; C II; D I

पादप हार्मोनों (स्तंभ X) और उनके जैव संश्लेषण पूर्वगामियों (स्तंभ Y) की सूची नीचे दी गई है।

	स्तंभ X	स्तंभ Y				
A.	ऑक्सिन	i.	जिरैनिनजिरैनिन डाइफॉस्फेट			
B.	साइटोकाइनित्स	ij.	एडिनोसिन अधौश (Moiety)			
C.	एथिलीन	III.	ट्रिप्टोफान			
D.	जिबरेतिन्स	iv.	1-एमीनोसाइवलोपोपेन 1-कार्बाक्सलिक अम्ल			

निम्न विकल्पों में से कौन सा स्तंभ X और Y के मध्य सही सुमेल को दर्शाता है?

- 1. A i; B ii; C iii; D iv
- 2. A iii; B i; C iv; D ii
- 3. A iii; B ii; C iv; D i
- 4. A-IV; B-III; C-II; D-I

A1 1

1

A2 2

2

A3 3

3

A4 4

Objective Question

.07	703107				4.0	1.00

The structure and process of formation of different antigens in blood ABO system are given in the following statements:

- A. Galactose is added to the terminal of H-antigen by a transferase expressed in individuals with type A blood.
- B. The B antigen is formed by a transferase expressed in individuals with type B blood which adds a terminal N-acetylgalactosamine to H-antigen.
- C. The H-antigen is formed by fucose transferase that adds a terminal fucose to its precursor.
- D. The H-antigen is the precursor of both the A- and B- antigens and it is the blood group antigen in persons of type O blood.

Which one of the following options represents the correct combination of statements?

- 1. A and B
- 2. B and C
- 3. C and D
- 4. A and D

ABO रक्त प्रणाली में विभिन्त प्रतिजनों के बनते की प्रक्रिया और संरचना निम्न कथनों में दी गई है:

- A. रक्त प्रकार A वाले व्यक्तियों में प्रदर्शित होते वाले टांसफरेज द्वारा गैलेक्टोज को H-प्रतिजन के अंतिम छोर पर जोड़ा जाता है।
- B. रक्त प्रकार B वाले व्यक्तियों में प्रदर्शित होते वाले टांसफरेज एक अन्त्य N-एसिटिलगैलेक्टोसामीन को H-प्रतिजन में जोडकर B-प्रतिजन का निर्माण करता है।
- C. H-प्रतिजन फ्युकोज ट्रांसफरेज द्वारा बनता है जो इसके पूर्वगामी में एक अन्त्य प्यूकोज जोड़ता है।
- D. H-प्रतिजन A और B दोनों प्रतिजनों का पूर्वगामी है और यह रक्त प्रकार 0 वाले व्यक्तियों के रक्तवर्ग प्रतिजन है।

निम्न में से कौन सा विकल्प सही कथनों के युग्म को दर्शाता है ?

- 1. A और B
- 2. B और C
- 4. A और D

A1 1

1

A2 2

2

A3 3

3

4

Objective Question

The characteristic features and causes of different heart sounds during a cardiac cycle of humans are given in the following statements.

- A. The second heart sound is loud and sharp when the diastolic pressure is decreased in the aorta or pulmonary artery.
- B. Sudden closure of atrioventricular (AV) valves at the start of ventricular systole caused vibration that produces first heart sound.
- C. The second heart sound is caused by the vibration associated with the closure of aortic and pulmonary valves after the end of ventricular systole.
- D. The first heart sound is soft when heart rate is low as the ventricles are well filled with blood and the leaflets of AV valves float together before

Which one of the following options represents the combination of all correct statements?

- 1. A. B and C
- 2. B and C only
- 3. B, C and D
- 4. A and D only

मतुष्यों की एक हद चक्र के दौरात विभिन्त हदय आवाजों के विशिष्ट लक्षण और कारण निम्न कथनों में दिए गए हैं।

- A. द्वितीय हद ध्वनि तेज और तीक्ष्ण होती है, जब अनुशिथिलनदाव महाधमनी या फुफ्फुसीय धमनी में घटता है।
- B. तिलय प्रकुंचन की पारंभ में अलिंद तिलय (atrioventricular, AV) कपाट के अचानक बंद होने से कंपन होता है, जो प्रथम हद ध्विन उत्पन्न करता 南
- C. तिलय प्रकुंचत की समाप्ति के बाद महाधमतीय और फुफ्फुसीय कपाट के बंद होने से संबंधित कंपन के कारण दितीय हद ध्वनि होती है।
- D. प्रथम हद ध्वति मृद् होती है जब हदयगति दर कम होती है, जबकि निलय रक्त से अच्छी तरह भरे होते हैं, और प्रकुंचन से पहले AV कपाट के पर्णक साथ-साथ उतराते हैं।

तिस्त में से कौत सा विकल्प सभी सही कथतों के संयोजन को दर्शाता है?

- 2. केवल B और C
- 3. B, C और D
- 4. केवल A और D
- Al 1
- A2 2
- 2
- A3 3
- A4 4

The sensory nerve fibers (Column X) and the sensory receptors connected to different sensory nerves (Column Y) are given below.

	Column X		Column Y			
Sensory nerve fibre		Sensory receptor				
A.	la	i,	Muscle spindle, flower spray ending			
В.	lb	II.	Pain and cold receptor			
C.	II	iii.	Muscle spindle, annulo-spiral ending			
D.	III	iv.	Golgi tendon organ			

Which of the following options represents the correct match between column X and column Y?

- 1. A- I, B- II, C- III, D- IV
- 2. A- ii, B- iii, C- iv D-i
- 3. A- iii, B- iv, C- i, D- ii
- 4. A- iv, B- i, C- ii, D- iii

संवेदी तंत्रिका तन्तुओं (स्तंभ X) और विभिन्न संवेदी तंत्रिकाओं से जुड़े संवेदी बाही (स्तंभ Y) नीचे दिए गए हैं ।

	स्तंभ X		स्तंम Y				
संवेदी तंत्रिका तन्तु		संवेदी ग्राही					
A.	Ia	į.	पेशी तर्कु, पुष्पस्पे अन्त्य (Flower spray ending)				
В.	Ib	ii.	पीड़ा और शीत बाही				
C.	П	iii.	पेशी तर्कु, एन्युलो-स्पाइरल अन्त्य				
D.	III	iv.	गोलगी टेन्डन ऑर्गन				

निम्न में से कौन सा विकल्प स्तंभ X और स्तंभ Y के मध्य सही सुमेल को दर्शाता है?

- 1. A- I, B- II, C- III, D- IV
- 2. A- II, B- III, C- IV D-I
- 3. A- iii, B- iv, C- i, D- ii
- 4. A- iv, B- i, C- ii, D- iii

A1 1

1

A2 2

-

2

A3 : 3

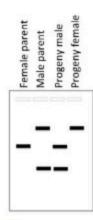
3

A4 4

Objective Question
110 703110 4.0 1.00

	Certain statements are put forth on the regulation of renal blood flow and are given below.		
	A. Norepinephrine dilates the renal vessels.		
	B. Dopamine causes renal vasodilation and natriuresis.		
	C. Angiotensin II exerts a constrictor effect.		
	D. Prostaglandins decrease blood flow in the renal cortex and increase it in the medulla.		
	E. Acetylcholine produces renal vasodilation.		
	Choose the option with the combination of all correct statements.		
	1. A, B and D		
	2. B, C and D		
	3. B, C and E		
	4. A, C and E		
	बुक्क रक्त प्रवाह के तियंत्रण पर कुछ कथत प्रतिपादित किए गए हैं और नीचे दिए गए हैं।		
	A. नारएपिनेफीन वृक्कीय वाहिका को फैला देता है।		
	B. डोपामीन वृक्कीय वाहिका विस्फारण (vasodilation) और अतिसोडियम		
	मूत्रता (natriuresis) करता है।		
	C. एन्जियोटेन्सिन II एक संकोचन प्रभाव डालता है।		
	D. प्रोस्टाग्लैन्डित युक्कीय वल्कुट में रक्त प्रवाह घटाता है और मध्यांश में		
	बढ़ाता है।		
	E. एसिटिलकोलित वृक्कीय वाहिकाविस्फारण उत्पन्त करता है।		
	सभी सही कथनों के संयोजन वाले विकल्प का चयन कीजिए।		
	1. A, B और D		
	2. B, C और D		
	3. B, C और E		
	4. A, C और E		
	A1 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4 :		
 	4		
tive Question 703111		4.0	1.00

The following proposed statements describe some aspects of thermoregulation. A. The basal metabolic rate is rapidly adjusted in the thermoneutral zone to maintain temperature homeostasis. B. The homeotherms who have the ability to hibernate, do not maintain normal physiological temperature range during hibernation. C. The thermoregulation is not regulated by hypothalamus. D. Warm-blooded animals require more food compared to cold-blooded animals of the same size and weight. Which one of the following options represents combinations of all correct statements? 1. A. B and C 2. A, B and D 3. B and D only 4. A and B only निम्नलिखित प्रस्तावित कथन ताप नियमन के कुछ दृष्टिकोणों की व्याख्या करते A. ताप समस्थिति वनाए रखने के लिए ताप निरेपक्ष क्षेत्र में आधारीय चयापचयी दर तेजी से समायोजित होती है। B. समतापी जिनमें शीतनिद्रा की क्षमता होती है, शीतनिद्रा के दौरान शरीर मे सामान्य क्रियात्मक तापमान सीमा नहीं बनाए रखते हैं। C. तापनियमन अधश्चेतक (hypothalamus) द्वारा नियन्त्रित नहीं होता है। D. नियततापी पाणियों को उसी आकार और वजन के विषमतापी पाणियों की तुलना में अधिक भोजन की आवश्यकता होती है। तिम्त में से कौत सा विकल्प सभी सही कथतों के संयोजन को दर्शाता है? 3. केवल B और D 4. केवल A और B A1 1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 1.00

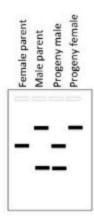

112 703112

		Given below are statements about the Kallmann syndrome.		
		A. It is a condition of hypogonadotropic hypogonadism.		
		B. There is a loss of sense of smell in such individuals.		
		C. This syndrome is most common in women.		
		D. It happens due to mutation of the KALIG1 gene on X-chromosome that codes for an adhesion molecule necessary for the normal development of the gustatory nerve.		
		Which one of the following options has the combination of all correct statements?		
		1. A and D		
		2. B and C		
		3. C and D		
		4. A and B		
		कॉलमैन (Kallmann) सिंड्रोम के बारे में निम्न कथन दिए गए हैं।		
		A. यह एक अरूपजनदपोशी (hypogonadotropic) जननग्रंथि अरूपक्रियता		
		(hypogonadism) की परिस्थिति है।		
		B. ऐसे व्यष्टियों में घाण क्षमता नष्ट हो जाती है।		
		C. यह सिंड्रोम महिलाओं में बहुपाय है।		
		D. यह X-गुणसूत्र मुँ KALIG1 जीन के उत्परिर्वन के कारण होता है जो		
		रससंवेदी तंत्रिका (gustatory nerve) के सामान्य विकास के लिए आवश्यक एक		
		आसंजन अणु को कोडित करता है।		
		निम्न विकल्पों में से कौन सा सभी सही कथनों का युग्म है?		
		1. A और D		
		2. B और C		
		3. C और D		
		4. A और B		
		A1 1		
		1		
		A2 2		
		2		
		A3 3		
		3		
		A4 ,		
Ohiac	tive Question	4		
	703113		4.0	1.00

The following represents a Southern hybridization of restricted genomic DNA, probed with a DNA fragment corresponding to gene 'Z'.

'Z' is a single copy gene.

The hybridization patterns of parents and their progeny have been presented.



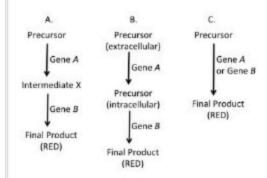
Which one of the following options is a correct interpretation of the observation?

- 1. Gene 'Z' is present on an autosome.
- 2. Gene 'Z' is an example of X- linked gene.
- 3. In this organism the female is the heterogametic sex.
- 4. Polymorphism of this gene has been studied by RAPD.

निम्नांकित जीन 'Z' के संगत एक DNA खंड से प्रोब किया गया प्रतिबंधित जिनोमिक DNA के सदर्न संकरण को दर्शाता है।

'Z' एक एकल प्रतिलिपि जीत है। जनकों और उनकी संतति का संकरण प्रतिरूप दर्शाया गया है।

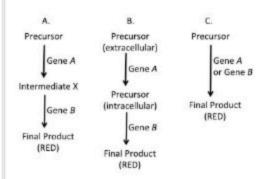
निम्न विकल्पों में से कौन प्रेक्षणों की सदी व्याख्या है?


- 1. जीत 'Z' एक अलिंगसूत्र पर उपस्थित है।
- 2. जीत 'Z' एक X- सहलग्त जीत का उदाहरण है।
- 3. इस जीव में मादा का लिंग विषमयुग्मकी है।
- 4. इस जीत के बहरूपता का अध्ययन RAPD द्वारा किया गया है।
- Al 1
 - 1
- A2 2
 - .

A3 3 3 A4 4 . .

Objective Question

114 703114


Epistasis is observed between different genes in flower color of sweet pea. A red variety on selfing yields red:white in ratio 9:7. The precursors and intermediates give white color. The following biochemical pathways were proposed for the above observations:

Which one of the options represents the correct pathway(s) that explains the observations?

- 1. A only
- 2. Both A and B
- 3. Both B and C
- 4. A, B and C

मीठी मटर (sweet pea) के पुष्प रंग में विभिन्न जीतों के बीच अध्यातरण (epistasis) प्रेक्षित की गई। एक लाल प्रजाति स्वपरागण पर लाल:सफेद प्रजाति 9:7 के अनुपात में देती है। पूर्ववर्ती (precursors) और मध्वर्ती (intermediates) सफेद रंग देते हैं। उपरोक्त प्रेक्षणों के लिए निम्न जैवरासायनिक पथ (pathways) प्रस्तावित किए गए हैं:

तिम्त विकल्पों में से कौत सा प्रेक्षणों की व्याख्या के सही पथ/पथों को दर्शाता है ?

- 1. केवल A
- 2. A और B दोनों
- 3. B और C दोनों
- 4. A, B और C

A1 1

4.0

1.00

		1		
Dejective Question This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3		A2 2		
A3 3 A4 4 A Dispective Question This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3		* 20		
A4 4 24 This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3				
Dispective Question This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3		j. 3		
Disjective Question This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3				
This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3		A4 4		
Dejective Question This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3		1		
This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3	Ohiactiva Onastion	,		
	Objective Question 115 703115	This is a hypothetical example. In a plant, a single gene governs flower color. The wild type color is red, while the mutant is white. It was demonstrated that insertion of a transposable element caused the white phenotype. In a PCR test, a set of primers outside the site of insertion is used to amplify the genomic DNA and the PCR products are resolved by Agarose gel electrophoresis. A geneticist made a cross between two plants. 30 progeny from the cross was analyzed by PCR. Each lane in the gel below represents analysis of one progeny. 1 2 3	4.0	1.00

यह एक काल्पनिक उदाहरण है। एक पौध में, एक एकल जीन पुष्प रंग को नियंत्रित करता है। वन्य प्रकार का रंग लाल है जबकि उत्परिवर्ती सफेद है। यह दर्शाया गया है कि पारांतरीय तत्व का निवेशन सफेद लक्षणप्ररूप देता है।

एक PCR परीक्षण में, जिनोमिक DNA के प्रवर्धन के लिए निवेशन स्थल के बाहरी एक प्राइमरों के समुच्चय का प्रयोग किया गया और उत्पादों (PCR products) को ऐगारोज जेल (gel) वैद्युतकणसंचलन द्वारा पृथक किया गया ।

एक आनुवंशिकी विनानी ने दो पौधों के मध्य संकरण किया। संकरण से उत्पादित 30 संततियों का PCR द्वारा विश्लेषण किया गया। नीचे दिए गए जेल की प्रत्येक लेन (lane) एक संतति के विश्लेषण को दर्शांती है।

उपरोक्त के आधार पर निम्न में से कौन सा कथन सत्य है ?

- 1. DNA चिन्हक प्रभावी है।
- 2. पाँधे 3 में सफेद पुष्प हैं।
- 3. उपरोक्त संकरण में एक जनक विषमयुग्मजी तथा दूसरा समयुग्मजी था।
- 4. यदि पौधा 1 और पौधा 30 के मध्य संकरण से प्राप्त संतति का समात तरीके से विश्लेषण किया जाता, तो दो विभिन्न प्रकार के बैडिंग पैटर्न प्राप्त होंगे।

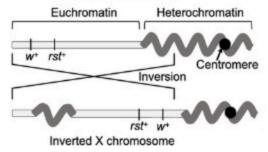
A1 1

1

A2 2

2

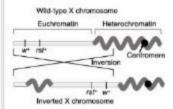
A3 3


3

A4 4

Objective Question

116 703116 1.00 Shown below is the inversion product of the X chromosome of wild type Drosophila. The w+ gene coding for the red eye colour is near the telomere and another gene roughest (rst+) is close to w+ but towards the centromere. The eyes of roughest mutants have rough appearance The inversion brings w+ near the vicinity of highly compact centromeric heterochromatin and places rst+ little farther away from the centromeric heterochromatin.


Wild-type X chromosome

Which of the following phenotypes will **NEVER** be observed in the *Drosophila* strain with inversion?

- 1. Red and smooth eyes
- 2. White and smooth eyes
- 3. White and rough eyes
- 4. Red and rough eyes

वन्यप्रकार ड्रोसोफिला के X गुणसूत्र का व्युत्क्रम उत्पाद तीचे दिखाया गया है। आंख के लाल रंग को कोड करने वाला w+ जीत गुणसूत्रान्त के पास है और दूसरा जीन रफेस्ट (rst+) w+ के पास सूत्रकेन्द्र की तरफ है। रफेस्ट उत्परिवर्तियों की आंखों की बाद्याकृति खुरदरी है। व्युत्क्रमण (inversion) w+ को उच्चतम सघन सेंट्रोमेरिक हेट्रोक्रोमैटिन (centromeric heterochromatin) के परिवेश के पास ले आता है और rst+ को सेंट्रोमेरिक हेट्रोक्रोमैटिन से थोड़ा अधिक दूर पहुंचा देता है।

निम्न में से कौन से लक्षणप्ररूप व्युत्कमण वाली ड्रोसोफिला नस्ल में कभी नहीं दिखाई देगें?

- 1. लाल और चिकती आँखें
- 2. सफेद और चिकती ऑखं
- 3. सफेद और खुरदरी आँखें
- 4. लाल और खुरदरी ऑखं

A1 1

1

A2 2

2

A3 3

3

A4 4

Objective Question 117 703117 4.0 1.00 A mutant strain of E.coli having defects in one of the DNA repair pathways was identified. To identify the pathways where mutation occurred, a researcher looks at the following parameters and identified the defect to be in base excision repair pathway. A. Topoisomerase II enzyme activity. B. AP endonuclease activity C. Expression of mutL and mutS D. DNA glycosylase activity E. DNA ligase activity Based on the changes in which of the above parameters, this conclusion can be drawn? 1. A, C, E 2. B, D, E 3. B,C,D 4. A, D, E DNA क्षतिसुधार पथों में से एक में बुटि वाली ई. कोलाई की एक उत्परिवर्ती तस्ल पहचानी गयी। एक शोधकर्ता उत्परिवर्तित पथों की पहचान के लिए निस्त मापदडों को देखता है और पता लगाता है कि बृटि क्षार उच्छेदी क्षतिस्धार पथ (base excision repair pathway) में है। A. टोपोआइसोमेरेज ।। एन्जाइम सक्रियता B. AP एंडोन्यूक्लिएज सक्रियता C. mutL और mutS का अभिव्यक्ति D. DNA ग्लाइकोसाइलेज सक्रियता E. DNAलाइगेज सक्रियता उपरोक्त किस मापदंडों में परिवर्तनों के आधार पर यह निष्कर्ष निकाला जा सकता 意: 1. A, C, E 2. B, D, E 3. B, C, D 4. A, D, E A1 1 A2 2 2 A3 3 3 A4 4 Objective Question 118 703118 4.0 1.00 A new strain of bacteria was created by introducing an artificial operon, to allow bacterial cells to grow in the presence of iron. The Fe++ operon consisted of genes that made the cells capable of tolerating increased iron. For efficient functioning of this operon, the following desirable features were considered.

Which one of the following can be used to develop this operon?

- 1. A repressor protein, which is active when bound to Fe++
- 2. An activator protein, which is active when not bound to Fe++
- 3. A repressor protein, which is inactive when bound to Fe++
- 4. A repressor protein, which is active constitutively

जीवाणु कोशिका को लाँह की उपस्थिति में वर्धन के लिए, एक कृत्रिम प्रचालेक (artificial operon) के निवेसन से जीवाणु की एक नई नस्ल बनाई गई। Fe++ प्रचालेक में ऐसे जीन शामिल हैं जो कोशिका को बढ़े हुए लाँह को सहन करने में सक्षम बनाते हैं। इस प्रचालेक के कुशल कार्य के लिए निम्न वांछनिये लक्षण स्विचारित किए गए।

तिम्त में से किस का उपयोग इस प्रचालेक को बनाने के लिए किया जा सकता है?

- 1. एक दमनकारी प्रोटीन जो Fe++ से बंधने पर सकिय होती है
- 2. एक सिक्रयक प्रोटीन जो Fe++ से नहीं बंधे होने पर सिक्रय होती है
- 3. एक दमनकारी प्रोटीन जो Fe++ से वंधने पर निष्क्रिय होती है
- 4. एक दमनकारी पोटीन जो सर्वक्षण सक्रिय होती है

Al 1

1

A2 2

2

A3 3

3

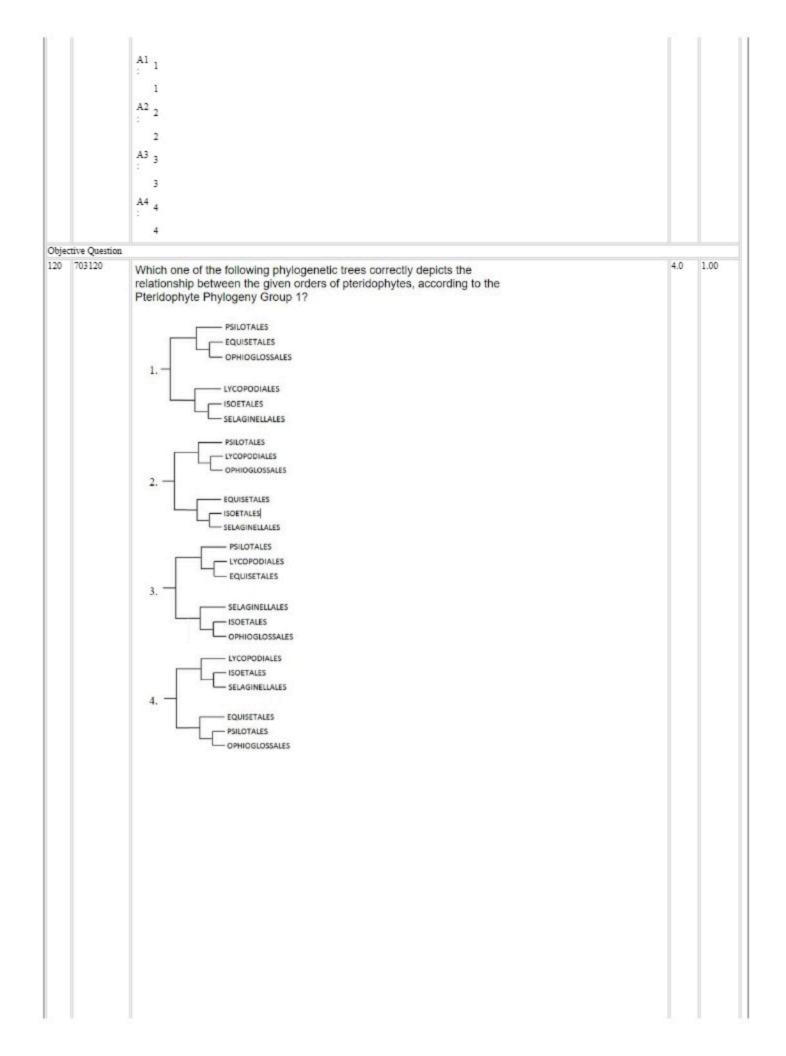
A4 4

4

Objective Question

119 703119

Consider a highly diverse community of closely related species of lizards which has evolved in a short period of time and that occupies different ecological niches in peninsular India. What type of speciation process can explain the above pattern?


- Non-ecological speciation
- 2. Adaptive radiation
- 3. Allopatric speciation
- 4. Parapatric speciation

घनिष्ठ प्रजातियों की छिपकलियों की एक बहुत विविधतापूर्ण समुदाय पर विचार कीजिए जो कि समय की एक अल्पअविध में विकसित हुई और प्रायद्वीपीय भारत में विभिन्त पारिस्थितिक निकेत में रहती है। किस प्रकार की जाति उद्भवन प्रक्रिया उपरोक्त प्रक्रम की व्याख्या कर सकती है?

- 1. अपारिस्थितिकीय जाति उद्भवत
- 2. अनुकूली विकिरण
- 3. विषमस्थानिक जातिउद्भवन
- पैरापैट्रिक जाति उद्भवन

4.0

1.00

तिम्न में से कौन सा जातिवृत्तीय वृक्ष (phylogenetic trees), टेरिडोफाइट जातिवृत्त समूह 1 के अनुसार दिए गए टेरिडोफाइटों के वर्गों (orders) के मध्य संबंध को सही रूप से प्रदर्शित करता है? **PSILOTALES** EQUISETALES OPHIOGLOSSALES 1. LYCOPODIALES ISOETALES SELAGINELLALES **PSILOTALES** LYCOPODIALES OPHIOGLOSSALES EQUISETALES ISOETALES SELAGINELLALES **PSILOTALES** LYCOPODIALES EQUISETALES 3. SELAGINELLALES ISOETALES OPHIOGLOSSALES LYCOPODIALES ISOETALES SELAGINELLALES 4. EQUISETALES PSILOTALES OPHIOGLOSSALES A1 1 A2 2 2 A3 3 3 A4 4 4 Objective Question 1.00 Selected human diseases and their vectors are listed below: Column Y Column X Disease Vector A. Chikungunya Aedes mosquito B. Lyme disease ii. Anopheles mosquito Lymphatic filariasis iii. Aquatic snails Schistosomiasis iv. Ticks Which one of the following options represents the correct match between column X and column Y? 1. A-ii, B-iii, C-iv, D-i 2. A-iii, B-iv, C-i, D-ii 3. A-i, B-ii, C-iii, D-iv 4. A-I, B-Iv, C-II, D-III

121 703121

कुछ मानव रोगों और उनके वाहकों को नीचे सूचीबब किया गया है:

ĵ	स्तंभ X	स्तंभ Y					
	रोग	वाहक					
A.	चिकनगुनिया	i.	एडीज मच्छर				
В.	लाइम रोग	ii.	ऐनोफेलीज मच्छर				
C.	लसीका (Lymphatic) फाइलेरिया	iii.	जलीय घोंचे				
D.	सिस्टोसोमियासिस	iv.	किलनी (Ticks)				

निम्न विकल्पों में से काँन स्तंभ X और स्तंभ Y के मध्य सही मिलान को दर्शाता है?

- 1. A-II, B-III, C-IV, D-I
- 2. A-iii, B-iv, C-i, D-ii
- 3. A-i, B-ii, C-iii, D-iv
- 4. A-i, B-iv, C-ii, D-iii

A1 1

1

A2 2

2

A3 3

3

A4 4

Objective Question 122 703122

Given below are species concepts (Column X) and their descriptions (Column Y):

4.0 1.00

	Column X	Column Y				
A.	Typological species concept	j.	Single lineage of ancestor– descendant populations which maintains its identity from other such lineages			
В.	Biological species concept	ii.	A species is a set of organisms that resemble one another and is distinct from other sets.			
C.	Evolutionary species concept	iii.	Species are groups of interbreeding natural populations that are reproductively isolated from other such groups			
D.	Phylogenetic species concept	īv.	A group recognised by its monophyly			

Which one of the following options represents all the correct matches?

- 1. A-ii, B-iii, C-i, D-iv
- 2. A-I, B-II, C-III, D-IV
- 3. A-iii, B-ii, C-i, D-iv
- 4. A-iv, B-iii, C-i, D-ii

जाति	अवधारणायं	मनंभ	X और	उतके	विवरण	मनंभ	YĂ	ਰੀਚੇ	टिए	गाउ	#	
------	-----------	------	------	------	-------	------	----	------	-----	-----	---	--

	स्तंभ X	स्तंभ Ү		
A	प्रारुपिक जाति अवधारणा	i.	पूर्वज-वंशज आबादियों की एकल वंशायली जो दूसरी ऐसी वंशायलियों से अपनी पहचान बनाये रखती है।	
В.	जैविक जाति अवधारणा	ii.	जाति जीयों का एक समूह है जो एक दूसरे के सदृश होते हैं और अन्य समूहों से भिन्न होते हैं।	
C.	यिकासीय जाति अवधारणा	III.	जातियाँ अंतःप्रजनन याली प्राकृतिक आवादियों का समूह है जो अन्य ऐसे समूहों से जननीय-रूप से विलगित होती है	
D.	जातिवृत्तीय जाति अयधारणा	iv.	एकस्रोतोद्भयता (monophyly) द्वारा मान्य एक समूह	

निम्न में से कौन सा विकल्प सभी सही मेलों को दर्शाता है ?

- 1. A-ii, B-iii, C-i, D-iv
- 2. A-I, B-II, C-III, D-IV
- 3. A-III, B-II, C-I, D-IV
- 4. A-iv, B-iii, C-i, D-ii

A1 1

1

A2 2

2

A3 3

...

A4 4

. 4

Objective Question

123 703123

In birds and mammals, 3rd, 4th and 6th aortic arches persist in adult animals with some structural modifications. Which of the following modified organization is correct?

- 1. In birds, 4th aortic arch forms systemic aorta on the left.
- 2. In mammals, 6th aortic arch forms pulmonary aorta.
- 3. In birds, 3rd aortic arch forms systemic aorta.
- 4. In mammals, 3rd aortic arch forms systemic aorta.

पक्षियों और स्तनधारियों में, कुछ संरचनात्मक परिवर्तनों के साथ व्यस्क प्राणियों में 3^{rd} , 4^{th} और 6^{th} महाधमनी चाप बने रहते हैं। निम्न में से कौन सा परिवर्तित संगठित समूह सही है?

- 1. पक्षियों में, बायीं तरफ 4th महाधमतीचाप देहिक महाधमती बताती है।
- 2. स्तनधारियों में, 6th महाधमनीचाप फुफ्फुसीय महाधमनी बनाती है।
- 3. पक्षियों में, 3rd महाधमतीचाप दैहिक महाधमती बताती है।
- 4. स्तनधारियों में, 3rd महाधमनीचाप देहिक महाधमनी बनाती है।

A1 1

1

4.0

1.00

	A2 2				
	2				
	A3 3				
	3				
	A4 4				
	4				
bjective Ques					
24 703124	The following tab		s habitat type (Column X) and geographic ere they can be found:	4.0	1.0
		-,			
	Column X Type of habita	t	Column Y Seographic region		
	A. Mangroves	į.	Western Ghats		
	B. Terai	ii			
	C. Laterite plate D. Arid grasslan	_			
	E. Shola	us it	Tillitalayan tootiilis		
		0.000	AND DESCRIPTION OF STREET OF STREET		
	Which of the follo column X and Y'	owing ?	options represents the correct match between		
	1. A-iii, B-iv, C				
	2. A-iv, B-iii, C	-ii, D-	, E-ii		
	3. A-iii, B-iv, C	-i, D-i	, E-i		
	4. A-I, B-II, C-I	v, D-II	, E-Iv		
	निम्न सारिणी प्राव	ृतवार	प्रकार (स्तंभ X) और भौगोलिक क्षेत्रों (स्तंभ Y) जहां ये		
	प्राकृतवास मिल स	कते हैं	. उनको सूचित करती है।		
	स्तंभ X		स्तंभ Ү		
	The state of the s				
	प्राकृतवास के प्रकार		गेगोलिक क्षेत्र		
	प्राकृतवास के प्रकार A. मैंग्रोव	i.	गेगोलिक क्षेत्र वेस्टर्न घाट		
		i.			
	A. मैंग्रोच	i. ii.	वेस्टर्न घाट		
	A. मैंग्रोय B. तराई C. क्षैटेराइट पठार	i. ii. iii.	वेस्टर्न घाट बन्नी सुन्दर वन		
	A. मैंग्रोय B. तराई C. क्षेटेराइट पठार D. शुष्क घासस्थल	i. ii. iii.	वेस्टर्न घाट बन्नी सुन्दर वन		
	A. मैंग्रोय B. तराई C. क्षैटेराइट पठार	i. ii. iii.	वेस्टर्न घाट बन्नी सुन्दर वन		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला	i. ii. iii. iii.	वेस्टर्न घाट बन्नी सुन्दर वन		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला	i. ii. iii. iii. iiv.	वेस्टर्न घाट बन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है?		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क पासस्थल E. शोला तिम्त विकल्पों में	i. ii. iii. iii. iii. iii.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है?		
	A. मैं ग्रोय B. तराई C. क्षेटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त विकल्पों में 1. A-iii, B-iv, C	i. ii. iii. iii. iii. iii.	वेस्टर्न घाट बन्नी सुन्दर वन हिमालयी तलहटी ज स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I		
	A. मैंग्रोय B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त विकल्पों में 1. A-III, B-Iv, C 2. A-Iv, B-III, C	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोय B. तराई C. क्षेटेराइट पठार D. शुष्क पासस्थल E. शोला तिम्त विकल्पों में 1. A-iii, B-iv, C 2. A-iv, B-iii, C-i 4. A-i, B-ii, C-i A1	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोय B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त विकल्पों में 1. A-iii, B-iv, C 2. A-iv, B-iii, C-i 4. A-i, B-ii, C-i Al 1	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त विकल्पों में 1. A-III, B-IV, C 2. A-IV, B-III, C 3. A-II, B-IV, C 4. A-I, B-II, C-I 1 1 1 1 1 1 1 1 1	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त चिकल्पों में 1. A-III, B-Iv, C 2. A-Iv, B-III, C 3. A-III, B-iv, C 4. A-I, B-II, C-I A1 1 1 A2 2	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला तिम्त चिकल्पों में 1. A-III, B-Iv, C 2. A-Iv, B-III, C 3. A-III, B-iv, C 4. A-I, B-II, C-I A1 1 1 A2 2 2	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोय B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला िम्न विकल्पों में 1. A-III, B-Iv, C 2. A-Iv, B-III, C 3. A-II, B-Ii, C-I A-I 1 1 A-I 1 I 1 I 1 A-I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोच B. तराई C. लैटेराइट पठार D. शुष्क पासस्थल E. शोला तिम्त विकल्पों में 1. A-iii, B-iv, C 2. A-iv, B-iii, C-i 4. A-i, B-ii, C-i A1 1 1 A2 2 2 A3 3 1 3	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोय B. तराई C. लैटेराइट पठार D. शुष्क घासस्थल E. शोला िम्न विकल्पों में 1. A-III, B-Iv, C 2. A-Iv, B-III, C 3. A-II, B-Ii, C-I A-I 1 1 A-I 1 I 1 I 1 A-I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		
	A. मैंग्रोच B. तराई C. कैटेराइट पठार D. शुष्क पासस्थल E. शोला तिम्त विकल्पों में 1. A-iii, B-iv, C 2. A-iv, B-iii, C-i 3. A-ii, B-ii, C-i 4. A-i, B-ii, C-ii 4. A-ii, B-ii, C-ii 4. A-ii, B-ii, C-ii 4. A-ii, B-iii, B-iii, B-iii, B-iii, B-iii, B-iii, B-iii, B-iii, B-iii, B-iii	i. ii. iii. iii. ii. r iv.	वेस्टर्न घाट वन्नी सुन्दर वन हिमालयी तलहटी न स्तंभ X और Y के मध्य सही मेल को दर्शाता है? I, E-I , E-I		

Which one of the following statements about change in temperature with elevation is correct?

- Adiabatic cooling of air due to increasing elevation leads to a drop of temperature by ~10°C for every 1,000 m in elevation, irrespective of water vapor or cloud formation.
- Adiabatic cooling of air due to increasing elevation leads to a drop of temperature by ~10°C for every 1,000 m in elevation, as long as no water vapor or cloud formation occurs.
- A vertical ascent of 1km from the Earth surface produces a temperature change roughly equivalent to that brought about by an increase in latitude of 1,000 km.
- A vertical ascent of 600 m from the Earth surface produces a temperature change roughly equivalent to that brought about by an increase in latitude of 100 km.

ऊँचाई के साथ तापमात में परिवर्तन के बारे में निम्लांकित कौन सा एक कथन सही है?

- बढ़ती हुई ऊँचाई के कारण हवा का रूढोप्स शीतलन, जलवाष्प या बादल बनने के बावजूद प्रत्येक 1000 m ऊँचाई के लिए ~10°C तापमान का हास करता है।
- बढ़ती हुई ऊंचाई के कारण हवा का रूढोष्म शीतलन, जब तक जलवाष्प और बादल नहीं बनता है, प्रत्येक 1000 m ऊँचाई के लिए ~10°C का हास करता है।
- पृथ्वी की सतह से 1 km का लम्बबत आरोहण, तापमान में लगभग बराबर परिवर्तन उत्पन्न करता है, जो कि 1000 km के अंक्षाश (लैटीट्यूड) में बढ़ोत्तरी के कारण लाया जाता है।
- 4. पृथ्वी की सतह से 600 m का लम्बवत आरोहण. तापमान में लगभग वरावर परिवर्तन उत्पन्न करता है, जो कि 100 km अंक्षाश (लैटीट्यूड) में बढोत्तरी के कारण लाया जाता है।

A1 1

1

A2 2

2

A3 3

3

A4 4

4

Objective Question 126 703126

1.00

In a study comparing different plant communities (A to D) across a landscape, the following data were obtained:

Community	Α	В	С	D	
No. of species in the community	12	25	11	19	
No. of species common t	o both o	ommuni	ties		
Community	Α	В	C	D	
A		9	8	10	
В			6	14	
С				7	
D					

Which one of the following options represents the pair of communities with highest similarity value when Sorenson's coefficient is used?

- 1. A and C
- 2. A and D
- 3. B and C
- 4. B and D

किसी भूपृष्ठ के एक सिरे से दूसरे सिरे तक विभिन्न पादप समुदायों (A से D) की तुलना करने वाले एक अध्ययन में निम्नलिखित आँकड़े प्राप्त किये गये:

समुदाय	Α	В	C	D	
समुदाय में जातियाँ की संख्या	12	25	11	19	
दोनों समुदायों में उभयी	नेष्ठ जातियाँ	की सखंय	Т		
समुदाय	A	В	С	D	
A		9	8	10	
В			6	14	
С	1			7	
D					

निम्न विकल्पों में से कौन सा उच्चतम समानता मान वाले समुदायों का जोड़ा दर्शाता है, जब सोरेन्सन के गुणांक का प्रयोग किया जाता है ?

- 2. A 新 D
- 4. B और D

A1 1

1

A2 2

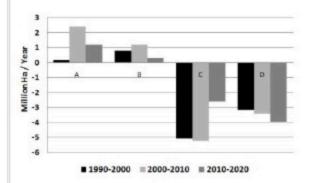
: 4

-

A3 3

3

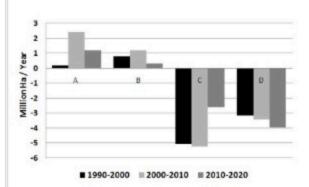
A4 .


1

Objective Question

703127	4.0	1.00

	Phosphorus is an important essential element for living organisms. Given below are a few fluxes of the global phosphorus cycle.		
	A. Internal cycling in terrestrial ecosystems		
	B. Internal cycling in marine ecosystems		
	C. Terrestrial runoff into oceans		
	D. Natural chemical weathering in terrestrial ecosystems		
	Select the correct option that arranges the fluxes in an increasing order of magnitude.		
	1. A < D < B < C		
	2. A < B < C < D		
	3. D < C < A < B		
	4. D < A < C < B		
	फॉस्फोरस जीवित जीवों के लिए एक महत्वपूर्ण आवश्यक तत्व है । नीचे वैश्विक		
	फॉस्फोरस चक्र के कुछ प्रवाहों को दिया गया है।		
	A. स्थलीय पारिस्थितिक तंत्र में आंतरिक चक्रण		
	B. समुद्रीय पारिस्थितिक तंत्र में आंतरिक चक्रण		
	C. महासागरों के अंदर स्थलीय अपवाह		
	D. स्थलीय पारिस्थितिक तंत्र में प्राकृतिक रासायनिक अपक्षय		
	सही विकल्प का चयन कीजिए जो प्रवाहों को परिमाणों के एक बढ़ते हुए क्रम में		
	कमवड करता है।		
	1. A < D < B < C		
	2. A < B < C < D		
	3. D < C < A < B		
	4. D < A < C < B		
	Al 1		
	1		
	A2 2		
	2		
	A3 ₃		
	3		
	A4 4 :		
	4		
tive Question 703128		4.0	1.00


The graph below depicts the net change in forest cover in four regions (A – D) between 1990 and 2020, according to the FAO report - 'The State of World's Forests 2020'.

Which one of the following options correctly identifies these regions?

- A Asia, B North and Central America, C South America, D -Europe
- 2. A North and Central America, B Africa, C Asia, D South America
- 3. A Asia, B Europe, C South America, D Africa
- 4. A Europe, B South America, C Asia, D Africa

तिम्त आरेख FAO रिपोर्ट – वैश्विक वर्तो कि स्तिथि- 2020 (The State of World's Forests 2020) के अनुसार 1990 और 2020 के मध्य चार क्षेत्रों (A –D) में वन आवरण में शुद्ध परिवर्तन को दर्शाता है।

तिम्त विकल्पों में से कौत सा इत क्षेत्रों की सही ढंग से पहचात करता है ?

- A एशिया, B उत्तरी और केन्द्रीय अमेरिका C दक्षिणी अमेरिका, D - यूरोप
- A उत्तरी और केन्द्रीय अमेरिका, B अफ्रीका, C एशिया D दक्षिणी अमेरिका
- 3. A एशिया, B- यूरोप, C दक्षिणी अमेरिका, D अफ्रीका
- 4. A यूरोप, B दक्षिणी अमेरिका, C -एशिया, D अफ्रीका

Objective Questi	on.	
129 703129	Based on theoretical concepts of mating systems in plants, pollen: ovule ratios are likely to be most skewed in which one of the following cases? 1. Entomophilous dioecious species 2. Entomophilous bisexual species 3. Anemophilous bisexual species 4. Anemophilous dioecious species पादपों में संगम प्रणाली की सैदान्तिक अवधारणाओं के आधार पर, परागःबीजांड अनुपात निम्त में से किस स्थिति में सबसे विषम होना संभावित है? 1. कीटपराणित एकलिंगी जाति 2. कीटपराणित उभयलिंगी जाति 3. वायुपराणित उभयलिंगी जाति 4. वायुपराणित एकलिंगी जाति 4. वायुपराणित एकलिंगी जाति 3. वायुपराणित एकलिंगी जाति 4. वायुपराणित एकलिंगी जाति 3. वायुपराणित एकलिंगी जाति 4. वायुपराणित एकलिंगी जाति 5. किटपराणित एकलिंगी जाति 6. वायुपराणित एकलिंगी जाति 6. वायुपराणित एकलिंगी जाति 7. विस्ति वायुपराणित एकलिंगी जाति 8. वायुपराणित एकलिंगी जाति 8. वायुपराणित एकलिंगी जाति 9. वायुपराणित एकलिंगी जाति 8. वायुपराणित एकलिंगी जाति 9. 4.0 1.00	
	- *	
Objective Questi	4	
130 703130	Match the names of scientists (column X) with the ecosystem concepts (column Y) they are known for: Column X	4.0 1.00

वैनानिक के नाम (स्तंभ X) को, पारिस्थितिक अवधारणाओं (स्तंभ Y) जिनके लिए वे जाने जाते हैं, के साथ मिलान कीजिए:

स्तंभ X			स्तंभ Y		
A	चार्ल्स एल्टन	Ĭ.	पोषी सक्रियता		
B.	ए जी टैल्सले	íi.	पारिस्थितिकी शब्द		
C.	ए जे लोटका	III.	पारिस्थितिकी प्रणालियों में आहार संबंधों की पिरामिड संरचना		
D.	रेमण्ड लिंडेमैन	iv.	पारिस्थितिक तंत्र का एक ऊष्मागतिक दृश्य		

- 1. A- i, B- ii, C- iii, D- iv
- 2. A- Iv, B- II, C- III, D- I
- 3. A- Iv, B- I, C- II, D- III
- 4. A- iii, B- ii, C- iv, D- i

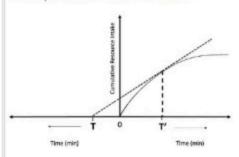
A1 1

1

A2 2

.

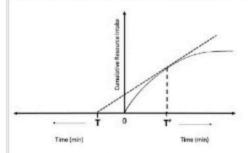
A3 3


3

A4 4

Objective Question

131 703131


The graph given below is based on the optimal foraging theory. If the Y axis represents "Cumulative Resource Intake" following the law of diminishing returns, what do T and T' stand for?

- 1. T: Patch residence time, T': Travel time to reach patch
- 2. T: Search time to find prey, T': Handling time for a prey
- 3. T: Travel time to reach patch, T': Patch residence time
- 4. T: Handling time for a prey, T': Search time to find prey

4.0 1.00

नीचे दिया गया आरेख सर्वोत्कृष्ट चारण सिदांत (optimal foraging theory) पर आधारित है। यदि Y-अक्ष हासमान प्रतिलाभ के नियम का पालन करते हुए संचयी संसाधन बाह्यता को दर्शाता है तो T और T' क्या हैं?

- 1. T: प्रखण्ड अवस्थिति काल, T': भूखण्ड तक पहुंचने के लिए यात्रा समय
- शिकार ढूंढने के लिए खोज समय, T': एक शिकार के लिए प्रवन्धन समय
- 3. T: भूखण्ड तक पहुंचने के लिए यात्रा समय, T': भूखण्ड अवस्थिति काल
- एक शिकार के लिए प्रबन्धन समय, T': शिकार ढूंढने के लिए खोज समय

A1 1

1

A2 .

2

A3 3

3

A4 4

.

Objective Question

132 703132

Defending a territory is energetically expensive and animals should invest in this only if it is profitable. A sunbird species is dependent on a plant species that contains nectar-rich flowers, making it an important resource for the sunbird. Males may defend territories containing these plants against other males, while allowing females to access the flowers. In this way they keep competitors out and get access to the females.

4.0

1.00

The columns below (P to S) represent characteristics of the resources and their variants (i and ii).

Column P	Column Q	Column R	Column S
Abundance of flowers in the habitat	Distribution of flowers in the habitat	Nectar depletion rate of flowers	Nectar renewal rate of flowers
i. High	i. Uniform	i. High	i. High
ii. low	ii. Patchy	ii. Low	ii. Low

From the given options, choose the combination of plant characteristics that makes defending a territory most profitable for males.

1. P - I, Q - I, R - II, S - I

2. P - I, Q - II, R - II, S - I

3. P - II, Q - I, R - I, S - II

4. P - ii, Q - ii, R - i, S - ii

किसी भूभाग की रक्षा करना ऊर्जा की दृष्टि से बहुमूल्य है और प्राणियों को इसमें केवल तभी निवेश करना चाहिए जब यह लाभकारी हो। एक सूर्यपक्षी (sunbird) प्रजाति एक ऐसी पादप प्रजाति पर निर्भर है जिसके पुष्पों में अधिक मकरंद होता है जो इसे सूर्यपक्षी के लिए एक महत्वपूर्ण स्नोत बनाता है। नर ऐसे पादपों वाले क्षेत्रों की दूसरे नरों से रक्षा करते हैं और मादाओं को पुष्पों तक पहुंचने देते हैं। इस प्रकार से वे प्रतियोगियों को दूर रखते हैं और मादाओं तक अपनी पहुंच बना लेते हैं।

निम्न स्तंभ (P से S) सोतों की विशेषताओं और उनके परिवर्तियों (I और II) को दर्शाते हैं I

स्तम्भ P	स्तम्भ Q	स्तम्भ R	स्तम्भ S
प्राकृतवास में पुष्पों की अधिकता	प्राकृतवास में पुष्पों का वितरण	पुष्पों की मकरंद अयक्षय दर	पुष्पों की मकरंद नयीकरण दर
i. 3==	i. एक समान	i. 3च्च	i. उच्च
ii. निम्न	ii. खंडमय	ii. निम्न	i. निम्न

दिए गए विकल्पों से पादप विशेषताओं के युग्मों का चयन कीजिए जो नरों के लिए किसी क्षेत्र की रक्षा करना सबसे फायदेमंद बनाता है।

- 1. P I, Q I, R II, S I
- 2. P I, Q II, R II, S I
- 3. P II, Q I, R I, S II
- 4. P II, Q II, R I, S II

A1 1

1

A2 2

2

A3 3

3

A4 4

4

Objective Question

133 703133

Given below are statements related to different types of natural selection models.

A. Directional selection changes the average value of a trait.

- B. Stabilizing selection increases variation in a trait.
- C. Disruptive selection reduces variation in a trait.
- D. Balancing selection maintains variation in a trait.

Select the correct option that represents the combinations of statements that are **NOT** true about natural selection.

- 1. A and B
- 2. B and C
- 3. C and D
- 4. A and C

4.0

1.00

```
नीचे प्रतिदर्श चयन प्रतिमानों के विभिन्न प्रकारों से संबंधित कथन दिए गए हैं।
                    A. दिशात्मक चयन एक विशेषक के औसत मान को बदल देता है।
                    B. स्थायीकारी चयन एक विशेषक में भिन्नता को बढ़ा देता है।
                    C. विघटनकारी चयन एक विशेषक में भिन्तता को घटा देता है।
                    D. संतुलनकारी चयन एक विशेषक में भिन्तता को बनाए रखता है।
                उस विकल्प का चयन कीजिए जो कथनों के ऐसे युग्म को दर्शाता है जो प्राकृतिक
                चयन के बारे में सही नहीं है।
                   1. A और B
                   2. B और C
                  4. A और C
                A1 1
                A2 2
                   2
                A3 3
                   3
                A4 4
Objective Question
134 703134
                                                                                                                           1.00
                                                                                                                      4.0
                Which one of the following Newick trees represents the correct relationship
                between apes.
                   1. ((((Orangutan, Gibbons), Gorillas), Chimpanzees), Humans)
                   2. ((((Humans, Chimpanzees), Gorillas), Orangutan), Gibbons)
                   3. ((((Humans, Gorillas), Chimpanzees), Gibbons), Orangutan)
                   4. ((((Humans, Chimpanzees), Gibbons), Orangutan), Gorillas)
                तिम्ल में से कौत सा न्यूयिक वृक्ष कपि समूहों के मध्य सही संबंधों को दर्शाता है।
                   1. ((((ओरांगुटान, गिब्बन्स), गोरिल्ला), चिम्पैन्जी), मानव)
                   2. ((((मानव, चिम्पैन्जी), गोरिल्ला), ओरांगुटान), गिब्बन्स)
                   3. ((((मातव, गोरिल्ला), चिम्पेन्जी), गिब्बन्स), ओरांगुटात)
                   4. ((((मानव, चिम्पैनजी) गिब्बन्स), ओरांगुटान), गोरिल्ला)
                A1 1
                   1
                A2 2
                   2
                A3 3
                   3
                A4 4
```

4.0

1.00

The table below lists phylogenetic reconstruction methods and the description of these methods, which includes both algorithmic and optimality-based methods or criteria.

M	Method (Column X)		Description (Column Y)
A.	Maximum parsimony	i.	Tree length, that is sum of branch lengths, often estimated by least squares.
В.	Minimum evolution	ii.	Minimum number of changes, minimised over ancestral states
C.	Bayesian	iii.	Cluster algorithms to arrive at a single tree.
D.	Neighbour Joining	iv.	Posterior probability, calculated by integrating it over branch lengths and substitution parameters

Select the option that best matches the tree reconstruction method (Column X) with its correct description in Column Y.

- 1. A-ii, B-i, C- iv, D-iii
- 2. A-iv, B-iii, C-i, D-ii
- 3. A-i, B-ii, C-iv, D-iii
- 4. A-i, B-iii, C-ii, D-iv

निम्न सारिणी जातिवृत्तीय पुनिर्माण विधियों और उन विधियों की व्याख्या जिसमें कलनविधीय (algorithmic) और इष्टमत्व आधारित विधियां या मानदंड दोनों शामिल हैं. को सूचिबद्ध करती है ।

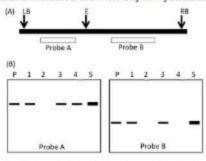
-	विधियां (स्तम्भ X)		व्याख्या (स्तंभ Y)
A	अधिकतम कृपणता (Maximum parsimony)	i.	पृक्ष की लंबाई, जो कि शाखाओं की लंबाई का योग है, अक्सर न्यूनतम वर्गों द्वारा आंकी जाती है।
В.	ल्यूनतम विकास (Minimum evolution)	ii.	पैतृक दशाओं पर ल्यूनीकृत परिवर्तनों की ल्यूनतम संख्या
C.	बायेसियन	III.	एक एकल वृक्ष पर पहुंचने के लिए गुच्छ कलनविधियां (cluster algorithms)
D.	पड़ोस संयोजन (Neighbour Joining)	iv.	शाखा लंबाई और प्रतिस्थापन मापदण्डों पर इसके समाकलन द्वारा निकाली गईं पश्च प्रायिकता

उस विकल्प का चयन कीजिए जो स्तंभ X के वृक्ष पुनर्तिमाण विधियों का स्तंभ Y में उनकी सही व्याख्या का सर्वोत्तम सुमेल हैं ।

- 1. A-ii, B-i, C- iv, D-iii
- 2. A-iv, B-iii, C-i, D-ii
- 3. A-I, B-II, C-Iv, D-III
- 4. A-I, B-III, C-II, D-IV

A1 1

-1

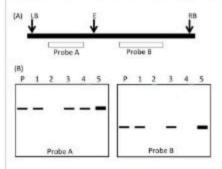

A2 2

2

A3 3

	3	
	A4 4	
	4	
Objective Ques	ion	
36 703136	In Bayesian statistics, A and A' correspond to different hypotheses, H1 and H2, and D corresponds to the observed data (X).	4.0 1.00
	An equation for hypothesis H1 can be given as $P(H1 D) = P(H1) \times P(X H1)$ P(X)	
	Given below are statements related to the above equation:	
	 A. The equation represents the conditional probability of hypothesis H1, given the data. 	
	B. The equation represents the probability of the data, given the hypothesis.	
	C. P(X H1) is called a prior probability, which is assigned to the hypothesis before the data is observed or analysed.	
	D. P(X H1) represents the likelihood under the hypothesis H1.	
	Select the option that represents all correct statements with respect to the equation above.	
	1. A and C	
	2. A and D	
	3. B and C	
	4. B and D बायेसियन सांख्यिकी में A और A' क्रमशः विभिन्न परिकल्पनाओं H1 और H2 के	
	तदनरूप होता हैं और D प्रेक्तित आंकड़े (X) से मेल खाता है।	
	परिकल्पना H1 के लिए एक समीकरण इस प्रकार दिया जा सकता है-	
	A. आंकड़े दिए जाने पर, समीकरण परिकल्पना H1 की औपवंधिक प्रायिकता दर्शाता है ।	
	B. परिकल्पना दिए जाने पर, समीकरण आंकड़ों की प्रायिकता दर्शाता है ।	
	C. P(X H1) को एक पूर्ववर्ती प्रायिकता कहते हैं जो कि आंकड़ों को प्रेक्षित या	
	विश्लेषित करने से पहले, परिकल्पनाओं को निर्दिष्ट किया जाता है ।	
	D. P(X H1) परिकल्पना H1 के अंदर संभाव्यता को दर्शाती है ।	
	उपरोक्त समीकरण से संबंधित कथन तीचे दिये गए हैं:	
	1. A और C	
	2. A और D	
	3. B और C	
	4. B और D	
	A1 1	
	1	
	A2 2	
	2	
	A3 3	
	3	
	A4 4	

A transgenic line was developed in mustard. The T₀ transgenic line was selfed and the insertion of transgene was analyzed in the parental (P) and progeny lines (1 to 5). The T-DNA region (between left (LB) and right (RB) borders) used for transformation is outlined in Figure A. The pattern following Southern hybridization using probes A and B is represented in Figure B. Genomic DNA was digested with EcoRI (E). The thickness of band indicates the intensity of hybridization.


The following statements were made based on the above observation:

- A. The developed transgenic line has a single copy of T-DNA.
- B. The absence of band in progeny 4 is due to incomplete transfer of the T-DNA during transformation.
- C. Progeny 2 is homozygous at the site of insertion.
- D. All selfed progeny of line 5 is expected to show hybridization with both probes A and B.

Which one of the following options has all of the correct statements?

- 1. D only
- 2. A and D only
- 3. B and C only
- 4. A, C and D

सरसों में एक पारजीनी वंश विकसित किया गया। To पारजीनी वंश का स्विनिषेचन किया गया तथा पारजीन के अंतर्वेशन को जनक (P) और संतित वंशों (1 से 5) में विश्लेषित किया गया। रूपांतरण के लिए प्रयोग किए गए T-DNA प्रक्षेत्र (वायी LB) और दांयी (RB) सीमाओं के मध्य) को चित्र A में दर्शाया गया है। प्रोव (probe) A और B का प्रयोग करते हुए सदर्न संकरण से प्राप्त स्वरूप चित्र B में दर्शाया गया है। संजीनी DNA को EcoRI(E) के साथ पाचित किया गया। वैंड की मोटाई संकरण की तीवता को सूचित करती है।

उपरोक्त प्रेक्षणों के आधार पर तिम्त कथन दिए गए हैं :

- A. विकसित पारजीती वंश में T-DNA की एकल प्रतिलिपि होती है ।
- मंतित 4 में बैंड की अनुपस्थिति, रूपान्तरण के दौरान T-DNA के अपूर्ण स्थानान्तरण के कारण होती हैं ।
- C. संतित 2 अंतर्वेशन के स्थल पर समयुग्मी है।
- D. वंश 5 की सभी स्वनिषेचित संततियों में प्रोब A और प्रोब B दोनों के साथ संकरण प्रदर्शित करने की संभावना है।
- 1. केवल D
- 2. केवल A और D
- 3. केवल B और C
- 4. A, C और D

A1 1

1

A2 2

2

A3 3

ř.,

A4 4

| Objective Question | 139 | 703139 | 4.0 | 1.00 |

The Cre-LoxP system was used to knock-out the p53 gene from the mice lungs. An immunoblot analysis was carried out as shown below.

	Control	Lungs	Prostate
p53			_
β- tubulin	_	_	_

The following assumptions were made.

- A. The LoxP system did not work since the recombinase was not functional.
- B. The Lox P sites were introduced under a promoter specific for lungs.
- C. The tissue-specified promoter selected was of the prostate gland.
- D. The mice died because of being knocked out of p53.
- E. The knocked-out mice developed mutagen-induced tumours in their prostate gland more rapidly than in their lungs.

Which one of the following is correct combination of above assumption?

- 1. A and D
- 2. B and C
- 3. C and E
- 4. A and E

Cre-LoxP प्रणाली का उपयोग मूचक के फेफड़ों से p53 जीत को तिरसित करते के लिए किया गया । एक प्रतिरक्षीशोषण (immunoblot) विश्लेषण तिस्त दर्शाए गए प्रकार से किया गया।

	Control	Lungs	Prostate
p53			
β- tubulin	_	_	_

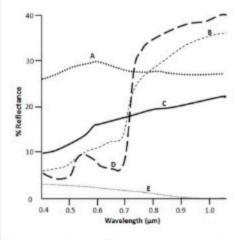
निम्नलिखित पूर्वातुमान बनाए गए ।

- A. LoxP प्रणाली काम नहीं करेगी क्योंकि रिकाम्बिनेज क्रियाशील नहीं थी ।
- B. फेफड़ों के लिए विशिष्ट एक प्रवर्तक के पश्च Lox P स्थल स्थापित किया
- C. चयनित अतक-विनिर्दिष्ट प्रवर्तक पौरूष गंथि का था।
- D. p53 के निरसन के कारण मुषक मर गया ।
- E. जीन विहीन मुपक मुं उत्परिवर्तन-प्रेरित अर्ब्द उनुके फेफड़ों की तुलना में पौरूष ग्रन्थि में ज्यादा तेजी से विकसित होते हैं।

निम्न में से कौन सा एक उपरोक्त पूर्वानुमानों का सही युग्म है?

- 1. A और D

- 4. A और E


Al 1

1

A2 2

Objective Question	A3 3 3 A4 4 5 4		
Objective Question 140 703140	The figure below depicts the reflectance curves of different features found in an urban ecosystem. 10	4.0	1.00

निम्न चित्र एक शहरी परिस्थितिक तन्त्र में पाए जाने वाले विभिन्न लक्षणों के परावर्तकता वकों (reflectance curves) को दर्शाता है ।

निम्न में से कौन सा विकल्प परावर्तकता वक्रों की सही पहचान करता है ?

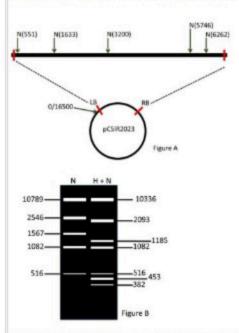
- A कंकीट की सड़क;
 B सूखी घास का मैदान;
 C अलकतरे की सड़क;
 E जलस्रोत
- 2. A जलस्रोतः B सजीव घास का मैदानः C सूखी घासः E अलकतरे की सड़क
- 3. A अलकतरे की सड़क; B सूखी घास का मैदान; C जलस्रोत; D -सजीव घास का मैदान
- 4. B अलकतरें की सड़क; C कंक्रीट की सड़क; D सजीव घास का मैदान; E - कंक्रीट की सड़क

A1 1

A2 2

2

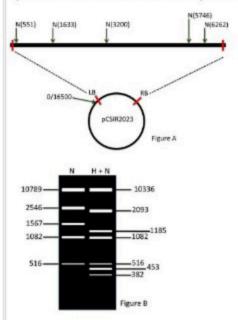
A3 3


3

A4 4

Objective Question

141 703141 4.0 1.00


Figure A represents the sites for Ncol (N) in a binary vector pCSIR2023. The vector is 16500 bp in size. Figure B represents the fragments observed when the vector is either digested with Ncol (N) or double digested with Hindlll and Ncol (H+N). The intensity of fluorescence of the 453 bp fragment is double that of the 516 bp fragment.

Which one of the following statements regarding the numbers and location(s) of HindIII site is correct?

- There are two sites of HindIII, one of which is located in the ~ 11Kb fragment generated by Ncol digestion.
- There are three sites of HindIII, one of which is located in the ~ 1.6Kb fragment generated by Ncol digestion.
- There are three sites of Hindill, one of which is definitely at 2015 position.
- 4. There are four sites of HindIII, one of which is at 2015 position.

चित्र A, द्वि-आधारी वाहक pCSIR2023 के Ncol (N) स्थल (साइट) को प्रदर्शित करता है। वाहक 16500 bp के आकार का है। चित्र B, Ncol (N) या HindIII और Ncol (H+N) से द्वि-पाचित करने के बाद दिखाई देने वाले खंडों को दर्शाता है। 453 bp वाले खंडों की प्रतिदीप्ति तीव्रता 516 bp वाले खंडों से दोगुनी है।

तिम्त में से कौत सा कथत HindIII स्थल की संख्या और अवस्थिति/अवस्थितियों के बारे में सही है ।

- HindIII की दो स्थल (साईट) है, जिसमें से एक Nool के पाचन द्वारा बना ~11Kb के खंड में अवस्थित है ।
- 2. HindIII के तीन स्थल है, जिसमें से एक Nool उपचार द्वारा बना ~ 1.6Kb के खंड में अवस्थित है।
- HindIII के तीन स्थल हैं, जिनमें से एक निश्चित तौर पर 2015 स्थान (position)
 पर है।
- 4. HindIII के चार स्थल हैं, जिसमें से एक 2015 स्थान पर है।

Objective Question

Following are marker enzymes that would be used to identify correct subcellular fractions.

	Column X		Column Y	
ENZYME		FRACTION		
A.	Lactate dehydrogenase	i.	Lysosomes	
В.	Acid phosphatase	II.	Microsomes	
C.	Glucose-6-phosphatase	iii.	Cytosol	
D.	Catalase	İV.	Peroxisomes	

Which one of the following options correctly pairs the enzymes with the subcellular fractions?

- 1. A-i, B-ii, C-iii, D-iv
- 2. A-iv, B-iii, C-i, D-ii
- 3. A-iii, B-i, C-ii, D-iv
- 4. A-ii, B-iv, C-iii, D-i

तिम्त सारणी में चिह्नक एन्जाइम (स्तंभ X में) हैं, जो कि सही उप-कोशिकीय अंशों (स्तंभ Y में) के पहचान हेतु उपयोग में लाए जाते हैं।

स्तंभ X एन्जाइम		स्तंभ Y	
		अंश	
A.	लैक्टेट डिहाइड्रोजिनेज	Ĺ	लाइसोसोम
B.	अस्ल फॉस्फेटेज	ii.	सूक्ष्मकाय
C.	ग्लूकोज-६-फॉस्फेटेज	iii.	कोशिकाद्रय
D.	कैटेलेज	iv.	परऑक्सीसोम

तिस्त में से कौत सा विकल्प एन्जाइमों को उप-कोशिकीय अंशों के साथ सही ढंग से सुमेलित है ?

- 1. A-i, B-ii, C-iii, D-iv
- 2. A-iv, B-iii, C-i, D-ii
- 3. A-iii, B-i, C-ii, D-iv
- 4. A-ii, B-iv, C-iii, D-i

A1 1

1

A2 2

2

A3 3

3

A4 4

- 0

Objective Question

143 703143 4.0 1.00

The following statements are suggested regarding the principle and uses of positron emission tomography (PET): A. The PET scanner is a positron ray detector. B. The PET scanner cannot determine the location of collision between positron and electron in the brain. C. The typical PET activation studies can measure the absolute metabolic activity of brain. D. In PET, a radioactive isotope is introduced into blood as 'tracer' that rapidly decays by emitting a positron from their atomic nuclei. Which one of the following options represents the combination of correct statement(s)? 1. A. B. and C 2. B only 3. C and D 4. D only निम्न कथन पाजिट्रान उत्सर्जन टोमोग्राफी (PET) के सिद्धांत और उपयोगों के बारे में प्रस्तावित किए गए हैं. A. PET क्रमवीक्षक (स्कैनर) एक पाजिट्रान किरण संसूचक है । B. PET क्रमवीक्षक मस्तिष्क में पॉजीट्रान और इलैक्ट्रान के टक्कर की जगह को निर्धारित नहीं कर सकते । C. प्रारूपिक PET सक्रियण अध्ययन, मस्तिष्क में पूर्णतया उपापचयी क्रिया को माप सकते हैं। D. PET में रक्त के भीतर एक रोडियोधर्मी आइसोटोप को ट्रेसर की तरह उपयोग किया जाता है, जो कि उनके परमाण्यिक नाभिक से एक पाजिदान को उत्सर्जित कर शीघता से विघटित होता है। तिम्त में से कौत सा विकल्प सभी सही कथत/कथतों के संयोजन को दर्शाता है ? 1. A, B, और C 2. केवल B 3. C और D 4. केवल D A1 1 1 A2 2 2 A3 3 3 A4 4 4 1.00 In DNA foot-printing,

- A. The DNA is labelled by random priming so that the entire DNA is labelled and one does not miss out any region that binds with the given protein.
- B. The DNA is end-labelled so that the bands get organized from higher to lower size after electrophoresis and autoradiography.
- C. A sequencing polyacrylamide gel is used to resolve all the fragments distinctly.
- D. A higher concentration of agarose gel is used to resolve the finer bands.

Which one of the following options has the combination of all correct statements?

- 1. A only
- 2. B and D
- 3. B and C
- 4. D only

DNA फुट-प्रिटिंग में

- A. DNA याइच्छिक प्राइमिंग द्वारा चिन्हित की जाती है, जिससे कि संपूर्ण DNA चिन्हित हो जाता है तथा वो दिए गए प्रोटीन से आविन्धत होने वाले किसी क्षेत्र को नहीं चूकता है ।
- B. DNA अंतक-चिन्हित किया जाता है, जिससे कि वैद्युतकणसंचलत और ऑटोरेडियोग्राफी के बाद बैण्ड, उच्च से निम्न माप में सुसज्जित हो जाते हैं ।
- C. एक अनुक्रमण पॉलीएकिलएमाइड जेल का उपयोग, सभी टुकड़ों को स्पष्ट रूप से विभेदित करने के लिए किया जाता है ।
- D. सूक्ष्म बैण्डों को विभेदित करने के लिए एगेरोज जेल की एक उच्च सान्द्रता का उपयोग होता है ।

निम्न विकल्पों में किसमें सभी सही कथतों का युग्म है ?

- 1. केवल A
- 2. B और D
- 4. केवल D
- A1 1
 - -1
- A2 2
- 2
- A3 3
- 3
- A4 4
 - .

Objective Question

An oligopeptide is subjected to amino acid analysis and found to have the following composition.

Tyr, Phe, Asp, Val, Arg, Met
The following statements represents/outline/list the results obtained after analysis:

A. The above oligopeptide is subjected to N-terminal Edman degradation, revealing Tyrosine residue.

- B. Trypsin treatment did not affect the peptide.
- C. Cyanogen bromide treatment yielded a dipeptide, tetrapeptide, and free Arginine.
- D. Chymotrypsin treatment yielded dipeptide and tetrapeptide. The composition of tetrapeptide was Valine, Arginine, and Methionine.

Based on above observations, what is the CORRECT sequence of heptapeptide?

- 1. Tyr-Asp-Phe-Met-Val-Met-Arg
- 2. Tyr-Phe-Asp-Met-Met-Val-Arg
- 3. Tyr-Met-Asp-Val-Met-Arg-Phe
- 4. Tyr-Asp-Met-Met-Phe-Val-Arg

एक ऑलिगो-पेप्टाइड का अमीतों अम्ल विश्लेषण किया गया और तिम्त संघटक प्राप्त हुए ।

Tyr, Phe, Asp, Val, Arg, Met

तिम्त कथत, विश्लेषण के पश्चात प्राप्त परिणामों को दर्शांते/रेखांकित/ सूचीबद करते हैं ।

- A. उपरोक्त ऑलिगो-पेप्टाइड के N-सिरं का एडमैन विघटन किया गया, जो टाइरोसीन अविशय्ट दिखाता है।
- B. ट्रिप्सिन उपचारण पेप्टाइड को प्रभावित नहीं करता ।
- त. साइनोजन ब्रोमाइड उपचारण से एक डाइपेप्टाइड, टेट्रापेप्टाइड और मुक्त आर्जिनीन प्राप्त हुआ ।
- D. काइमोट्रिप्सिन उपचारण, डाइपेप्टाइड और टेट्रापेप्टाइड प्रदान किया।
 टेट्रापेप्टाइड के संघटक वैलीन, आर्जिनीन और मिथियोनीन थे।

उपरोक्त प्रेक्षणों के आधार पर कौन हेप्टापेप्टाइड का सही अनुक्रम है ?

- Tyr-Asp-Phe-Met-Val-Met-Arg
- 2. Tyr-Phe-Asp-Met-Met-Val-Arg
- 3. Tyr-Met-Asp-Val-Met-Arg-Phe
- 4. Tyr-Asp-Met-Met-Phe-Val-Arg

A1 1 1 A2 2 : 2 A3 3 : 3

4